Số Học

You are currently browsing articles tagged Số Học.

Định lý. Với $p$ là số nguyên tố lớn hơn 3, và ta kí hiệu số nguyên $s^*$ thoả $ss^*\equiv 1 \pmod{p^2}$ là $\dfrac{1}{s}$. Lúc đó ta có \[1 + \dfrac{1}{2} + \dfrac{1}{3} + \ldots + \dfrac{1}{{p – 1}} \equiv 0 \pmod {p^2} \]

Chứng minh. Với Read the rest of this entry »

Tags: , , , ,

Bài 1. Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} – \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]

  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]link: http://mathscope.org/showthread.php?t=51561

Read the rest of this entry »

Tags: , , , , , , , , ,

Trước tiên, ta có được định lý sau.

Định lý. Với $\gcd\left( m,\,m’\right)=1$, và để $x$ chạy khắp một hệ thặng dư đầy đủ mod $m$, và $x’$ chạy khắp hệ thặng dư đầy đủ mod $m’$. Lúc đó $mx’+xm’$ chạy khắp hệ thặng dư đầy đủ mod $mm’$.

Chứng minh. Xét $mm’$ số $mx’+xm’$. Nếu \[mx’+m’x\equiv my’+m’y\pmod{mm’},\] Read the rest of this entry »

Tags: , , , ,

Bổ đề sau tuy đơn giản, nhưng có ý nghĩa lớn trong việc nâng bậc đồng dư. Nó là mấu chốt cho việc chứng minh hệ thống bổ đề LTE.

Bổ Đề. Cho $P(x) \in\mathbb Z [x]$, $p$ là số nguyên tố và $x \equiv a\pmod p$, khi đó
\[P(x) \equiv P(a) + (x – a)P'(a)\pmod{p^2}.\]

Chứng minh. Do tính đóng của các phép toán số học với quan hệ đồng dư, nên thực chất bổ đề này chỉ cần chứng minh với trường hợp $P(x)=x^n$. Lúc đó, chỉ cần viết ra hằng đẳng thức sau là thấy ngay Read the rest of this entry »

Tags: , , , ,

Vào năm 1828 Abel đưa ra một câu hỏi là liệu có số nguyên $a$ và số nguyên tố $p$ nào thoả $a^{p-1}\equiv 1 \pmod p^2?$. Theo Jacobi : $p\le 37$ lúc đó đồng dư thức trên có những nghiệm $(p,\,a)$ là \[(11,\,3),\,\quad (11,\,9),\,\quad (29,\,14),\,\quad (37,\,18).\] Qua quá trình nghiên cứu định lý cuối cùng của Fermat đã thúc đẩy vấn đề này. Định lý như sau: Với $p$ là mộ số nguyên tố lẻ. Nếu tồn tại những số nguyên $x,\,y,\,z$ thoả $x^p+y^p+z^p=0,\,p\nmid xyz$, lúc đó \[2^{p-1}\equiv 1\pmod{p^2},(1)\] Read the rest of this entry »

Tags: , , ,

 1. Khái niệm

Với $m$ là một số nguyên khác $0$. Nếu $a-b$ là bội của $m$, lúc đó ta nói $a$  đồng dư với $b\mod m$ và ta viết $a\equiv b\pmod m$. Nếu $a$ không đồng dư với $b$ mod $m$, lúc đó ta viết $a\not\equiv b\pmod m$.

Ví dụ.  $31\equiv -9\pmod {10}$.

Nếu $a,\,b$ đều là các số nguyên lúc đó ta luôn có $a\equiv b\pmod 1$.

Khái niệm của đồng dư xảy ra thường xuyên và và trong ngay cả cuộc sống hằng ngày của chúng ta, một ví dụ đó là để xác định ngày trong tuần chúng ta sẽ xét đồng dư $\mod 7$. Trong lịch ở đất nước chúng tôi ta đếm số năm bằng việc xét đồng dư $\mod 60$. Read the rest of this entry »

Tags: , , , , ,

Phương trình nghiệm nguyên sau đây, là một bài toán khá nổi tiếng trên AMM những năm trước. Việc giải quyết nó đòi hỏi phải nắm vững lý thuyết về phương trình Pythagoras

Bài toán.  Tìm nghiệm nguyên của phương trình $$x^3+4x=y^2.$$

Lời giải. Trước tiên ta cần có bổ đề sau:

Bổ đề.  Hễ phương trình $x^2+y^2=z^2$ có bộ nghiệm nguyên dương $\left(\mathfrak x;\,\mathfrak y;\,\mathfrak z\right)$ thì $2\mathfrak x\mathfrak y$ không là số chính phương.

Chứng minh.  Giả sử phương trình đó có bộ nghiệm nguyên dương $\left(\mathfrak x;\,\mathfrak y;\,\mathfrak z\right)$ với $2\mathfrak x\mathfrak y$ là số chính phương, gọi $\left(a;\,b;\,c\right)$ là bộ nghiệm như thế với $c$ nhỏ nhất. Do tính thuần nhất của phương trình nên
\[\gcd \left( {a;\,b} \right) = \gcd \left( {b;\,c} \right) = \gcd \left( {c;\,a} \right) = 1.\] Read the rest of this entry »

Tags: , , ,

Bài toán sau đây có sử dụng đến định giá p-adic, nội dung như sau

Bài toán. Cho số nguyên tố $p$ và các số tự nhiên $x;\,y;\,m$, với $x;\,y>1$ thỏa mãn \[\frac{x^p+y^p}{2}=\left(\frac{x+y}{2}\right)^m.\] Chứng minh rằng $m=p$.
Lời giải. Giả sử $m\ne p$, theo bất đẳng Jensen ta có\[{\left( {\frac{{x + y}}{2}} \right)^m} = \frac{{{x^p} + {y^p}}}{2} \ge {\left( {\frac{{x + y}}{2}} \right)^p}.\]Từ đó, $m>p\ge 2$ ta giả sử $\gcd(x;\,y)=d$ và viết $x=da;\,y=db$ với $\gcd(a;\,b)=1$ để có\[{2^{m – 1}}\left( {{a^p} + {b^p}} \right) = {d^{m – p}}{\left( {a + b} \right)^m}.\] Read the rest of this entry »

Tags: , , ,

Bài toán ở dưới đây, là bài Số Học trong đề thi VMO năm 2018 (bài số 6), một bài toán cổ điển về dãy Lucas. Nói chung, bài này tính chất Số Học thì ít mà chủ yếu là màu sắc Đại Số sơ cấp.

Bài toán. Cho dãy số $(x_n)$ xác định bởi $x_0=2,x_1=1$ và $$x_{n+2}=x_{n+1}+x_{n}\left ( n\geq 0 \right ).$$

  1. Với $n\geq 1$, chứng minh rằng nếu $x_n$ là số nguyên tố thì $n$ là số nguyên tố hoặc $n$ không có ước nguyên tố lẻ.
  2. Tìm các cặp số nguyên không âm $(m,n)$ sao cho $x_n$ chia hết cho $x_m$.

Lời giải. Dãy số trong bài toán trên gọi là dãy Lucas, và tất cả bài toán gói gọn trong công thức sau Read the rest of this entry »

Tags: , , , , ,

  1. Cho số nguyên dương $m$, và $n$ (với $n>1$) số nguyên khác $0$ là $x_1,\,x_2,\,\ldots ,\,x_n$. Biết rằng số nguyên tố $p$ thỏa mãn $p^m\mid x_1$ còn $x_k$ không chia hết cho $p^m$ với mọi $k>1$. Chứng minh rằng:\[\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \ldots + \frac{1}{{{x_n}}} \notin \mathbb Z.\] 2. Cho các số nguyên dương $a,b,c$ thỏa mãn $\gcd (a,\,b,\,c)=1$ và $$a\mid bc,\;b\mid ca,\;c\mid ab.$$ Chứng minh rằng $\dfrac{bc}{a}$ là một số chính phương. Read the rest of this entry »

Tags: , , , , ,

Newer entries »