Lát Cắt

You are currently browsing articles tagged Lát Cắt.

Với các bạn học sinh, trước khi tiếp cận bài viết này, nên đọc qua bài viết ở link sau http://maths.vn/lat-cat/

Ở bài viết nói trên, tôi đã lấy một ví dụ về sự tồn tại một lát cắt vô tỷ, đó là
$$S=\left\{x\in\mathbb Q:\;x^3<2\right\}.$$ Lát cắt này về thực chất, là lát cắt xác định số vô tỷ $\sqrt[3]{2}$. Cũng ở bài viết đó, ta đã có khái niệm về tích các lát cắt, và như chúng ta vẫn khơi khơi thừa nhận thì $$\sqrt[3]{2}^3=2.$$ Vậy là có ngay bài toán sau

Read the rest of this entry »

Tags: , ,

Một lát cắt $C$ là một tập con thực sự của $\mathbb Q$, thỏa mãn đồng thời các điều kiện

  • Mọi số hữu tỷ nhỏ hơn một phần tử nào đó của $C$, đều thuộc $C$.
  • Trong $C$ không có số lớn nhất.

Cho $a$ là một số hữu tỷ, ta có thể dễ dàng kiểm chứng $C_a$ là một lát cắt trong đó $$C_a=\left\{x\in\mathbb Q:\;x<a\right\}.$$ Những lát cắt kiểu này, gọi là lát cắt xác định số hữu tỷ, ngoài ra ta có thể kiểm tra tập hợp sau đây cũng là một lát cắt $$S=\left\{x\in\mathbb Q:\;x^3<2\right\}.$$ Cũng có thể chứng minh được rằng $S\ne C_a$ với mọi số hữu tỷ $a$, nói khác đi thì cái lát cắt $S$ kia nó không phải là lát cắt xác định số hữu tỷ. Lát cắt kiểu như $S$, tức là các lát cắt khác các lát cắt xác định số hữu tỷ, sẽ được gọi là lát cắt xác định số vô tỷ.

Read the rest of this entry »

Tags: , ,