Toán cao cấp

You are currently browsing the archive for the Toán cao cấp category.

Bài viết nối tiếp phần 2 ở [5]. Trường hợp này để xác định 2 tập $C$ và $E$ sẽ khó khăn hơn trước nhiều vì mở rộng nguyên có gì đó vẫn khá tổng quát. Ở bài viết này mang tính khái quát cao nên ta sẽ cố gắng tìm được nhiều tính chất của mở rộng và hạn chế ideal nhất có thể, khi làm việc về vành Dedekind ta sẽ làm rõ hơn phần này.

Trước khi đi vào bài viết, ta cần một số kết quả của mở rộng nguyên. Chứng minh các bạn có thể xem trong [2] hoặc [3].
Cho miền nguyên $A\subset B$ là các miền nguyên. Phần tử $b\in B$ được gọi là nguyên trên $A$ nếu tồn tại $a_0,a_1,…,a_{n-1}\in A$ sao cho \[b^n+a_{n-1}b^{n-1}+…+a_0=0\] Nếu $B$ là gồm toàn các phần tử nguyên của $A$ thì ta nói $B$ là một mở rộng nguyên của $A$.
Trên thực tế người ta định nghĩa mở rộng nguyên theo kiểu bao đóng nguyên (tức là sử dụng đến trường các thương). Cách định nghĩa trên của ta có những hạn chế nhất định, nhưng trong khuôn khổ bài viết này khi ta bàn chủ yếu đến mở rộng nguyên thì như vậy là đủ.
Tính chất 12: Cho $B$ là mở rộng nguyên của $A$. Nếu $B$ hữu hạn sinh theo nghĩa $A$- đại số thì $B$ cũng là $A$ – module hữu hạn sinh.

Read the rest of this entry »

Với lượng kiến thức chuẩn bị ở hai phần trước, phần 3 hi vọng sẽ đưa ra được một phương pháp để khảo sát nhóm Galois của đa thức hệ số hữu tỉ (nếu có).
V. Định lí Dedekin về nhóm Galois của đa thức hệ số nguyên monic, tách được
Định lí Dedekin là một phương pháp để tìm các phần tử đặc biệt trong nhóm Galois của một đa thức hệ số nguyên monic, tách được từ đó xác định được nhóm Galois đó.
Cần chú ý rằng định lí này có thể áp dụng cho đa thức hệ số hữu tỉ monic, vì đa thức hữu tỉ hoàn toàn có thể đưa về đa thức hệ số nguyên monic thông qua phép co dãn. Thật vậy xét $f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_0$ với $a_n,a_{n-1},a_{n-2},…,a_0\in\mathbb{Q}$. Khi đó tồn tại $d\in \mathbb{Z}-\{0\}$ sao cho $d.\frac{a_i}{a_n}\in\mathbb{Z}$ với mọi $1\le i\le n-1$. Từ đó đa thức:
\[g(x)=\frac{d^n}{a_n}f(\frac{x}{d})=x^n+d\frac{a_{n-1}}{a_n} x^{n-1}+…+d^n\frac{a_0}{a_n}\]

Read the rest of this entry »

Trong cuốn “Fields and Galois Theory” của J. S. Milne, có bài toán 3.1 rất thú vị như sau:
Bài toán 1: Cho $F$ là trường có đặc số bằng $0$. Chứng minh rằng $F(x^2)\cap F(x^2-x)=F$
(Ở đây F(X) là trường phân thức hữu tỉ trên $F$)

Khoan bàn về chứng minh của bài toán, bằng cách “lắp số, lắp điều kiện”: Chọn $F=\mathbb{Q}$ ta được một bài toán sơ cấp sau:
Bài toán 2: Tìm các cặp đa thức $f(x),g(x)\in \mathbb{Q}[x]$ sao cho:
\[f(x^2)=g(x^2-x)\]

Read the rest of this entry »

Bài viết này tiếp nối phần 1:
Ở phần 1, ta mới nếu ra cơ bản về lý thuyết Galois cũng như tính chất của nhóm Galois. Giờ ta sẽ đi vào cụ thể tính toán nhóm Galois của đa thức hữu tỉ bất khả quy.
Trong bài viết này, $F$ là một trường.

III. Điều kiện để đa thức tách được và nhóm $G_f\subset A_n$
Ta thấy rằng phần lớn lý thuyết Galois làm việc trên đa thức tách được. Một câu hỏi tự nhiên đặt ra là làm thế nào để biết một đa thức là tách được? Theo những lý thuyết ta ở phần 1 thì điều này buộc ta phải biết tất cả các nghiệm của $f$, việc này không hề đơn giản.
Cách thứ nhất là khảo sát $f$ và $f’$, ở đây hiểu $f’$ là đạo hàm hình thức của $f$. Một kết quả kinh điển cho biết rằng nếu $f$ có nghiệm bội $\alpha$ thì $\alpha$ cũng là nghiệm của $f’$. Ý tưởng đó được mở rộng thành kết quả sau đây:
Định lí: Cho $f\in F[x]$, $f$ bất khả quy. Khi đó $f$ tách được khi và chỉ khi $gcd(f,f’)=1$.

Read the rest of this entry »

Nhóm Galois như đóng vai trò rất quan trọng trong việc nghiên cứu cấu trúc của trường mở rộng, từ đó tìm được cấu trúc nghiệm của đa thức. Do đó việc tính nhóm Galois là rất quan trọng, tuy nhiên việc này không hề dễ dàng và không có một phương pháp tổng quát nào để tính mọi nhóm Galois

I. Sơ lược về lý thuyết Galois
Các khái niệm cơ bản về lý thuyết trường, bạn đọc có thể xem trong [2], ở đây tác giả chỉ trình bày ý tưởng chính của lý thuyết Galois.
Cho trường $K$ và xét mở rộng $F/K$. Khi đó tự đẳng cấu của $F$ trên $K$ tạo thành một nhóm, kí hiệu là $Aut(F/K)$.
Ta nói $F/K$ tách được nếu đa thức tối tiểu của mọi phần tử của $F$ trên $K$ đều tách được (không có nghiệm bội) , $F/K$ chuẩn tắc nếu nó là mở rộng đại số thỏa mãn mọi phần tử trong $F$ có đa thức tối tiểu trên $K$ phân rã trên $F$.
Đối tượng sau là cơ sở để xây dựng nên định lí cơ bản của lý thuyết Galois.

Read the rest of this entry »

Bài toán sau đây ở một đề thi, nội dung là

Bài toán 1. Cho $2021$ số thực dương $a_1,\,a_2,\,\ldots,\,a_{2021}$ và $F$ là tập con của $\mathbb R$ thỏa mãn đồng thời các điều kiện dưới đây

  • $a_k^2\in F$ với mỗi chỉ số $k$, đồng thời $a_1+a_2+\ldots +a_{2021}\in F$.
  • Nếu $x,\,y\in F,\,y\ne 0$ thì $x-y\in F$ và $\dfrac{x}{y}\in F.$

Chứng minh rằng, $a_k\in F$ với mỗi chỉ số $k$.

Bài toán này, có lẽ được mở rộng ra từ bài

Read the rest of this entry »

Tags:

Ta sẽ làm nóng bằng một bài toán như sau:
Bài toán 1: Cho $a=\sqrt{2}+ \sqrt[3]{3}$.
Có tồn tại đa thức $f\in \mathbb{Q}[x]$ sao cho $f(a)=\sqrt{2}$?
Lời giải: Câu trả lời là có.
Thật vậy, $a- \sqrt{2}= \sqrt[3]{3}$. Lập phương hai vế ta được:
\[3=(a-\sqrt{2})^3=a^3-3\sqrt{2}a^2+6a-2\sqrt{2} \] Từ đó ta có $\sqrt{2}=\dfrac{a^3+6a-3}{3a^2+2}$
Mặt khác, ta dễ kiểm tra \[g(x)=(x^3+6x-3)^2-2(3x^2+2)^2=x^6-6x^4-6x^3+12x^2-36x+1\] là đa thức tối tiểu của $a$.
Đặt $h(x)=3x^2+2$. Ta thấy ngay $f$ và $g$ nguyên tố cùng nhau.
Giờ ta áp dụng [1] để tìm đa thức $p,q\in\mathbb{Q}$ sao cho: (chỗ này mình lười tính quá)
\[ph+qg=c\in\mathbb{Q}\] Khi đó $p(a)h(a)=c$ nên $\sqrt{2}=\dfrac{a^3+6a-3}{3a^2+2}=\frac{1}{c}(a^3+6a-3).p(a)$
Do đó $f(x)= \frac{1}{c}(x^3+6x-3).p(x)$

Read the rest of this entry »

Có 3 định lí đồng cấu nhóm cơ bản, ở bài viết này chúng ta quan tâm đến việc mở rộng định lí đồng cấu thứ 2, từ đó áp dụng chứng minh bổ đề Zassenhaus. Ngoài ra ta cũng bàn về nhóm con chuẩn tắc và tính giao hoán.

Cho $(G,.)$ là một nhóm. Nhắc lại rằng $H$ là nhóm con chuẩn tắc của $G$ nếu $H$ là nhóm con và $xH=Hx$ với mọi $x\in G$.
Nói cách khác $H$ giao hoán với bất kì phần tử nào của $G$, do đó $H$ giao hoán với bất kì tập con nào của $G$. Từ ý tưởng đó ta có mệnh đề sau:

Read the rest of this entry »

Một trong những bài toán kinh điển nhất khi nghiên cứu các cấu trúc đại số là phân loại chúng, nghiên cứu xem với điều kiện gì thì hai cấu trúc như vậy đẳng cấu với nhau. Ta có thể làm điều này với các nhóm Abel hữu hạn bằng việc xét chúng như các module trên miền chính ($\mathbb{Z}$-module). Bài viết dựa trên chương 12 của [1].

I. Phân loại module hữu hạn sinh trên miền chính
Cho $A$ là miền chính ( vành mà mọi ideal đều sinh bởi 1 phần tử ).
Nói chung việc phân loại module tổng quát rất khó vì ta không có gì để đối chiếu chúng. Bài toán phân loại sẽ dễ dàng hơn khi ta xét trên module tự do, đặc biệt trên miền chính ta có một kết quả rất mạnh tương tự như với không gian véc tơ: module của một module tự do cũng là module tự do.

Read the rest of this entry »

Ta đã tiếp cận nhiều bài toán cấp 2, được cho ở dạng chứng minh một biểu thức đối xứng nào đó là số hữu tỉ, ví dụ như:

Bài toán 1: Chứng minh rằng: $a^4+b^4$ là số hữu tỉ với $a=1+\sqrt{5}$ và $b=1-\sqrt{5}$

Bài toán 2: Chứng minh rằng: $a^3b+b^4$ không là số hữu tỉ với $a=1+\sqrt{5}$ và $b=1-\sqrt{5}$

Nhận thấy ngay rằng $a,b$ ở trên đều là nghiệm vô tỉ của đa thức hữu tỉ nào đó.
Vậy thì tại sao khi biểu thức của các nghiệm là đối xứng thì nó là hữu tỉ?
Liệu trường hợp biểu thức đó không đối xứng thì có phải nó luôn vô tỉ không? Nếu không thì khi nào nó xảy ra? Read the rest of this entry »

Ở bài viết http://maths.vn/sap-day-cac-so-huu-ty/, chúng ta biết rằng $\mathbb Q$ là một tập đếm được, nghĩa là ta có thể sắp tất cả các số hữu tỷ thành một dãy số. Tập $\mathbb Q$ lại là một tập con thực sự của tập số thực $\mathbb R$, và theo như bổ đề Cantor đã trình bày ở bài  http://maths.vn/dieu-kien-don-dieu-cua-ham-kha-vi/, thì tập hợp các số hữu tỷ “thưa thớt” hơn tập số thực. Tuy nhiên, theo như quá trình xây dựng $\mathbb R$ qua các lát cắt trên $\mathbb Q$, thì có một đặc tính rất quan trọng của $\mathbb Q$ ở trong Read the rest of this entry »

Tags: , , , ,

Bài toán mà Hải Thanh hỏi.

Bài toán. Tìm min của $f(x)=6x_1+x_2+x_3+3x_4+x_5-x_6$, với ràng buộc $x_i\ge 0$ với $i=\overline{1,\,6}$ và\[\left\{ \begin{array}{l}
– {x_1} + {x_2} – {x_4} + {x_6} = 15\\
2{x_1} – {x_3} + 2{x_6} = – 9\\
4{x_1} + 2{x_4} + {x_5} – 3{x_6} = 2
\end{array} \right.\] Read the rest of this entry »

Tags:

« Older entries