Số Học

You are currently browsing the archive for the Số Học category.

Bài viết tiếp nối phần 1 ở [4].
III. Mở rộng và hạn chế ideal trên vành các thương
Trong mục này, ta sẽ xét $A$ là miền nguyên và $S$ là tập con nhân tính của $A$ ($0\notin S$) và $B=S^{-1}A$ với $f:A\rightarrow S^{-1}A, x\mapsto x/1$. Tức là ở đây ta coi $A$ thực sự nằm trong $S^{-1}A$.

Xét $\mathfrak{a}$ là ideal trong $A$ và $\mathfrak{A}$ là ideal trong $S^{-1}A$ , khi đó $\mathfrak{a}^e=S^{-1}A\mathfrak{a}=S^{-1}\mathfrak{a}$ và $\mathfrak{A}^c=\mathfrak{A}\cap A$.
Giờ ta đi tìm họ các ideal mở rộng và ideal hạn chế trong trường hợp này.
Mệnh đề 8: Cho $\mathfrak{A}$ là ideal của $S^{-1}A$. Khi đó $\mathfrak{A}^{ce}=\mathfrak{A}$ hay $E=I(S^{-1}A)$.
Chứng minh. Hiển nhiên $\mathfrak{A}^{ce}=S^{-1}(\mathfrak{A}\cap A)$ nằm trong $\mathfrak{A}$. Điều ngược lại cũng đúng vì xét $a/s\in \mathfrak{A}$ với $a\in A,s\in S$ thì $s.a/s=a\in \mathfrak{A}$ nên $a\in \mathfrak{A}\cap A$ nên $a/s\in S^{-1}(\mathfrak{A}\cap A)$.
Do từ mệnh đề 2 ta có $E=\{\mathfrak{B}\lhd S^{-1}A:\mathfrak{B}^{ce}=\mathfrak{B}\}$ nên ta có điều phải chứng minh.

Read the rest of this entry »

Bài viết này trình bày một số kết quả về mở rộng và hạn chế ideal, cụ thể trong trường hợp vành thương, trên vành các thương và trên mở rộng nguyên

Cho $A$ là một vành. Nếu $\mathfrak{a}$ là ideal của $A$ thì ta kí hiệu $\mathfrak{a}\lhd A$. Ngoài ra ta gọi $I(A)$ là họ các ideal trong $A$, $Spec(A)$ là họ các ideal nguyên tố trong $A$, $M(A)$ là họ các ideal cực đại trong $A$.
Với miền nguyên $A$ và tập con nhân tính $S$ của $A$ ($0\notin S$), kí hiệu $S^{-1}A=\{a/s|a\in A,s\in S\}$ là vành các thương trên $A$ đối với $S$. Đặc biệt trong trường hợp $S=A-\{0\}$, ta kí hiệu trường các thương của $A$ bởi $F(A)=(A-\{0\})^{-1}A$.
Còn trường hợp $S=S_{\mathfrak{p}}=A-\mathfrak{p}$ với $\mathfrak{p}$ là một ideal nguyên tố trong $A$ thì ta kí hiệu $A_{\mathfrak{p}}=S_{\mathfrak{p}}^{-1}A$.
Một số kiến thức cơ bản về vành và ideal, bạn đọc có thể xem trong chương I của [1].

Read the rest of this entry »

Bài toán sau, nói về đồng dư trên $\mathbb Q$ và thương Fermat trên đó.

Bài toán. Cho $p$ là một số nguyên tố lẻ, các số nguyên dương $m$ và $n$ thỏa mãn\[1 + \frac{1}{{{2^{p – 1}}}} + \ldots + \frac{1}{{{{\left( {p – 1} \right)}^{p – 1}}}} = \frac{m}{n}.\]Chứng minh rằng $(p-2)!m+n$ chia hết cho $p^2$.

Nó có lời giải như sau

Read the rest of this entry »

Tags: , ,

Bài toán sau đây ở một đề thi, nội dung là

Bài toán 1. Cho $2021$ số thực dương $a_1,\,a_2,\,\ldots,\,a_{2021}$ và $F$ là tập con của $\mathbb R$ thỏa mãn đồng thời các điều kiện dưới đây

  • $a_k^2\in F$ với mỗi chỉ số $k$, đồng thời $a_1+a_2+\ldots +a_{2021}\in F$.
  • Nếu $x,\,y\in F,\,y\ne 0$ thì $x-y\in F$ và $\dfrac{x}{y}\in F.$

Chứng minh rằng, $a_k\in F$ với mỗi chỉ số $k$.

Bài toán này, có lẽ được mở rộng ra từ bài

Read the rest of this entry »

Tags:

Có người em hỏi tôi bài toán sau, và bạn ấy cần một lời giải sơ cấp, nội dung bài toán như sau.

Bài toán 1. Cho các số nguyên $a,\,b,\,c,\,d$ thỏa mãn\[a + b\sqrt 2 + c\sqrt 3 + d\sqrt 5 + e\sqrt 7 = 0.\]Chứng minh $a=b=c=d=e=0$.

Bạn nào đã học về lý thuyết mở rộng trường, thì cái bài này quá đơn giản. Còn, với yêu cầu sơ cấp hóa, thì chả có gì đơn giản hơn, là ta đi sơ cấp hóa các quá trình làm việc bằng lý thuyết mở rộng trường. Và vì vậy, có lời giải như sau.

Read the rest of this entry »

Tags: , ,

Có bạn nhờ tôi bài toán như sau

Bài toán. Chứng minh rằng, với mỗi số nguyên dương $a$ sẽ có vô số nghiệm nguyên dương của phương trình\[\frac{{x + y + 1}}{y} + \frac{{y + a}}{x} = 4.\]

Tôi có lời giải như sau

Read the rest of this entry »

Tags: , ,

Bài này, liên quan đến một bài viết khác của tôi, vấn đề đặt ra là như thế sau

Với $\alpha=\frac{1+\sqrt 5}{2}$, xét vành $R = \left\{ {a + b\alpha :\;a,{\mkern 1mu} {\kern 1pt} b \in \mathbb Z} \right\}$, ta cần đi tìm các số nguyên tố $p$ để $I(p)=\{pr:\;r\in R\}$ là một ideal nguyên tố. Nghĩa là, cần tìm $p$ sao cho cứ từ $xy\in I(p)$ thì phải có $x\in I(p)$ hoặc $y\in I(p)$.

Bởi vì $5=\left(\sqrt 5\right)^2$, và nếu đặt $
\frac{1-\sqrt 5}{2}=\beta$ thì $\beta\in R$ thêm nữa $-2\alpha\beta=2$ cho nên ta chỉ cần xét các số nguyên tố lẻ và khác $5$.

Read the rest of this entry »

Tags: , , , ,

Tình cờ, mình nhìn thấy cái bài này trên THTT, nội dung như sau đây

Bài toán. Cho $n$ là một số nguyên dương, chứng minh rằng phải có $3^{n+1}$ bé hơn số ${\left( {\frac{{3 + \sqrt 5 }}{2}} \right)^{{3^n}}} + {\left( {\frac{{3 – \sqrt 5 }}{2}} \right)^{{3^n}}}$, đồng thời cái số đó sẽ chia hết cho $3$.

Read the rest of this entry »

Tags: , , , , ,

Ta sẽ làm nóng bằng một bài toán như sau:
Bài toán 1: Cho $a=\sqrt{2}+ \sqrt[3]{3}$.
Có tồn tại đa thức $f\in \mathbb{Q}[x]$ sao cho $f(a)=\sqrt{2}$?
Lời giải: Câu trả lời là có.
Thật vậy, $a- \sqrt{2}= \sqrt[3]{3}$. Lập phương hai vế ta được:
\[3=(a-\sqrt{2})^3=a^3-3\sqrt{2}a^2+6a-2\sqrt{2} \] Từ đó ta có $\sqrt{2}=\dfrac{a^3+6a-3}{3a^2+2}$
Mặt khác, ta dễ kiểm tra \[g(x)=(x^3+6x-3)^2-2(3x^2+2)^2=x^6-6x^4-6x^3+12x^2-36x+1\] là đa thức tối tiểu của $a$.
Đặt $h(x)=3x^2+2$. Ta thấy ngay $f$ và $g$ nguyên tố cùng nhau.
Giờ ta áp dụng [1] để tìm đa thức $p,q\in\mathbb{Q}$ sao cho: (chỗ này mình lười tính quá)
\[ph+qg=c\in\mathbb{Q}\] Khi đó $p(a)h(a)=c$ nên $\sqrt{2}=\dfrac{a^3+6a-3}{3a^2+2}=\frac{1}{c}(a^3+6a-3).p(a)$
Do đó $f(x)= \frac{1}{c}(x^3+6x-3).p(x)$

Read the rest of this entry »

Cho vành Euclid $A$ và $f,g\in A$ khác $0$. Khi đó tồn tại $d\in A$ sao cho $(f)+(g)=(d)$, ta gọi $d$ là một ước chung lớn nhất của $f,g$, theo đó tồn tại $a,b\in A$ nguyên tố cùng nhau sao cho:
\[af+bg=d\] Ta đã biết rằng trên vành Euclid, ta có thể tìm ước chung lớn nhất dựa trên thuật chia Euclid, nhưng việc tìm hai số $a,b$ để $af+bg=d$ không hiển nhiên chút nào. Bài viết này đi tìm một thuật toán giải quyết bài toán trên cho trường hợp vành số nguyên $\mathbb{Z}$

Ta thống nhất phép chia dư trong bài viết như sau: Với hai số nguyên $a,b$ khác $0$ bất kì, tồn tại duy nhất cặp số nguyên $q,r$ thỏa mãn $0\le r\le |b|$ sao cho $a=bq+r$
Cho hai số nguyên $f,g$ khác $0$. Dùng thuật chia Euclid, ta tìm được ước chung lớn nhất $d$ của chúng là một số tự nhiên.

Read the rest of this entry »

Phần 1 về phân loại nhóm hữu hạn ở http://maths.vn/phan-loai-nhom-huu-han/
Bài viết này chúng ta sẽ bàn về ứng dụng của những lý thuyết ta xây dựng ở phần trước vào chứng minh định lí Sylow cho nhóm giao hoán

Định lí Sylow thứ nhất: Cho $(G,+)$ là nhóm Abel với $|G|=p^r.m$ với $p$ là số nguyên tố,$r\ge 1$ và $(m,p)=1$. Khi đó tồn tại một nhóm con $H$ của $G$ có cấp $p^r$ và ta gọi đó là $p$-nhóm con Sylow của $G$.

Read the rest of this entry »

Bài toán sau, có thể coi là một mở rộng của định lý Wilson.

Bài toán. Cho $p$ là một số nguyên tố, thỏa mãn $p-3$ chia hết cho $8$. Gọi $S$ là tập tất cả các số ở dạng $a+b\sqrt 2$, trong đó $a$ và $b$ là các số nguyên không âm nhỏ hơn $p$ và không đồng thời bằng $0$. Giả sử tích tất cả các phần tử của $S$ viết được dưới dạng $m+n\sqrt 2$, trong đó $m$ và $n$ là các số nguyên. Tìm số dư của $m$ và $n$ khi đem chia cho $p$. Read the rest of this entry »

Tags: , ,

« Older entries