“How to Solve It” là tên một cuốn sách nổi tiếng của G.Pólya, một nhà sư phạm Toán Học nổi tiếng. Tôi mạo phép mượn nó làm tiêu đề cho chuỗi bài viết này, một chuỗi bài tôi muốn viết từ lâu. Nguyên nhân khoan hoãn và trù trừ cho dự định viết chuỗi bài này, vì tôi cảm thấy tự ti bởi năng lực bản thân, sợ viết ra rồi bị đánh giá là lên gân etc vv.. Tuy nhiên, do bản chất công việc phải làm hằng ngày, nên tôi lại hiểu rõ trách nhiệm mình cần làm. Thôi thì cứ viết lại những gì mình cảm nhận, hy vọng nó có ích với một số đối tượng nhất định. Read the rest of this entry »
You are currently browsing the archive for the Đại Số category.
Tập số thực có sự sắp tự hoàn chỉnh, nếu lấy mỗi số thực $r$ ra và đem so sánh với số $0$, thì có đúng ba trạng thái hệt như giới tính con người, đó là
- Không có dấu (buê-đê) nếu $r=0$.
- Dấu dương (man-lì) nếu $r>0$.
- Dấu âm (đàn bà) nếu $r<0$.
Với một đại lượng biến thiên $E$, khi đó có thể là $E$ bất biến dấu, không đổi dấu hoặc đổi dấu lung tung.. Nếu chúng ta lấy ra hai biểu thức chứa biến $x,\,y,\,..$ là $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$, ta sẽ nói $A$ và $A’$ tương đương về dấu trên miền $D$ nếu cứ với mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì trạng thái dấu của $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ là như nhau. Cụ thể là, tại mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ hoặc cùng bằng $0$ hoặc cùng dương, hoặc cùng âm. Ở phạm vi vài viết này, nếu $A$ và $A’$ tương đương về dấu trên $D$, tôi sẽ sử dụng ký hiệu\[A\mathop \sim\limits_D A’.\] Read the rest of this entry »
Tags: Hàm Đơn Điệu, Phương Trình, Phương Trình Hàm
Có bạn hỏi mình bài toán này lúc đang đi chơi, nhìn cực kỳ rối ren, như sau
Bài toán. Tìm $f:\,\mathbb R\to\mathbb R$ giảm ngặt và thỏa mãn\[f(x + y) + f\left( {f(x) + f(y)} \right) = f\left( {f(x + f(y)) + f(y + f(x))} \right),\forall x,{\mkern 1mu} y \in\mathbb R. \] Read the rest of this entry »
Tags: Hàm Đơn Điệu, Phương Trình Hàm
Ở IMO 2006, có bài đa thức như này
Bài toán N4 IMO 2006. Cho $P(x)$ là một đa thức hệ số nguyên có bậc $n$ với $n>1$, với mỗi số nguyên dương $k$ ta ký hiệu $
P_k(x)=\underbrace{P(P(\ldots(P(x) \ldots))}_{k\; \text{lần}\;P}
$. Chứng minh rằng với mỗi số nguyên dương $k$ lớn hơn $1$, luôn có không quá $n$ nghiệm nguyên phân biệt của phương trình $P_k(x)=x$.
Hôm nay, đem dạy bài này cho một đội để thị phạm cách chui vào bụi rậm rồi chui ra.. Cuối cùng xuất được cái lời giải sau 😀 Read the rest of this entry »
Tags: Đa Thức, Đồ Thị Hàm Số, Nghiệm
Cho $f(x)$ và $g(x)$ là hai đa thức hệ số thực, chúng ta quan tâm đến vấn đề là khi nào hàm số $h:\,\mathbb R\to\mathbb R$ với quy tắc tương ứng $h(x)=f(g(x))$ sẽ là một hàm đơn điệu trên $\mathbb R$. Rõ ràng, khi $f(x)$ hoặc $g(x)$ là hàm hằng thì $h(x)$ cũng là hàm hằng, do đó ta chỉ quan tâm đền tình huống $\deg f,\,\deg g>0$.
Do $\deg h=\deg f.\deg g$, và nếu $\deg h$ là một số nguyên dương chẵn thì \[\mathop {\lim }\limits_{x \to + \infty } h\left( x \right)\mathop {\lim }\limits_{x \to – \infty } h\left( x \right) = + \infty .\]Từ đây thấy rõ ràng là khi một trong hai đa thức $f(x)$ hoặc $g(x)$ có bậc chẵn, thì $h(x)$ không thể là hàm đơn điệu trên $\mathbb R$. Cũng để ý rằng, nếu $f(g(x))$ là nghịch biến, thì $-f(g(x))$ là hàm đồng biến, thêm nữa là nếu $f(g(x))$ là hàm đồng biến thì sau việc lấy giới hạn ra vô cực, ta thấy là hệ số ứng với bậc cao nhất của nó phải cùng dấu, mà hệ số này lại cùng dấu với tích của hai hệ số ứng với bậc cao nhất của $f(x)$ và $g(x)$ (do $\deg f,\,\deg g$ đều lẻ). Vì lẽ đó, ta chỉ cần quan tâm đến câu hỏi sau Read the rest of this entry »
Tags: Đa Thức, Đạo Hàm, Tính Đơn Điệu
Chúng ta bàn đến việc phá các căn ở dạng $\sqrt{x^2+k}$, với $k$ là một hằng số khác $0$. Trước tiên là một hoàn cảnh như sau.
Bài toán 1. Tính tích phân $I=\int \frac{d x}{\sqrt{x^{2}+1}}$.
Read the rest of this entry »
Tags: Đại Số, Phương Trình, Tích Phân
Bài toán. Tìm giá trị lớn nhất và giá trị nhỏ nhất của $$M=|17\cos x+19\sin x|+|11\cos x+23\sin x|.$$
Lời giải. Xét các số phức $$z=\cos x+i\sin x,\quad \alpha =11-23i,\quad \beta=17-19i.$$Đặt $e=\frac{\beta}{\alpha}$, ta có $|e|=1$ và có các biến đổi-đánh giá sau Read the rest of this entry »
Tags: Bài Tập Vặt, Bất Đẳng Thức, Số Phức
Bài toán. Cho đa thức $f(x)=x^2-\alpha x+1$.
- Với $\alpha=\dfrac{\sqrt{15}}{2}$, hãy viết $f(x)$ thành thương của hai đa thức với các hệ số không âm.
- Tìm tất cả các giá trị của $\alpha$ để viết được $f(x)$ thành thương của hai đa thức với các hệ số không âm.
Tags: Đa Thức, Đại Số, Nhị Thức Newton
Bài toán về đa thức sau đây, có thể sử dụng một skill kinh điển của Số Học, đó là Vieta jumping
Bài toán. Tìm các cặp đa thức có hệ số phức $P(x)$ và $Q(x)$ thỏa mãn điều kiện: $P^2(x)+1$ chia hết cho $Q(x)$ và $Q^2(x)+1$ chia hết cho $P(x)$. Read the rest of this entry »
Bài toán. Tìm tất cả các hàm $f:\,\mathbb R^+\to\mathbb R$ thỏa mãn \[f\left( x \right) – f\left( y \right) = \left( {x – y} \right)f’\left( {\sqrt {xy} } \right),\quad\forall\,x,\,y\in\mathbb R^+.\] Read the rest of this entry »
Tags: Đạo Hàm, Phương Trình Hàm, Tính Liên Tục
Bài viết này, có nội dung là một số bài toán tôi sử dụng để dạy các học sinh thi VMO năm học 2018-2019. Các bài toán này, một số được tôi sáng tác mới hoặc mở rộng và làm mạnh từ các bài đã cũ.
P1. Một số nguyên dương $a$ gọi “đẹp” nếu tồn tại số nguyên dương $b$ thỏa mãn $a^5+b^7$ chia hết cho $2018$. Tìm số các số đẹp không lớn hơn 2018. Read the rest of this entry »
Tags: Bổ Đề Tiếp Tuyến, Căn Nguyên Thuỷ, Đa Thức, Hàm Phần Nguyên, Song Ánh, Thặng Dư Bậc Cao
Bài 1: Cho các số thực dương $x,y,z$. Chứng minh rằng
$$\dfrac{x}{2x+y+z}+\dfrac{y}{2y+z+x}+\dfrac{z}{2z+x+y}\le \dfrac{3}{4}.$$
Bài giải
Áp dụng Cauchy Schwarz, ta có
$$ \dfrac{1}{2x+y+z} \le \dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z} \right),$$
hay
$$\dfrac{x}{2x+y+z}\le \dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right).$$
Tương tự như trên thì Read the rest of this entry »
Phản Hồi