Đại Số

You are currently browsing the archive for the Đại Số category.

Các bài phương trình-hệ phương trình-bất phương trình thông thường không phải thuộc lớp các bài khó hay là đẹp ở các cuộc thi hsg Toán, vì đa số các kỹ năng sử dụng để giải thường là xù xì trâu bò. Bài toán hệ phương trình ở dưới đây, cũng không là ngoại lệ nếu chỉ dùng biến đổi đại số. Tuy nhiên nếu để ý kỹ kết cấu, thì dùng hình học vào cũng tạo cảm giác đẹp đẽ.

Read the rest of this entry »

Bài toán sau đây ở một đề thi, nội dung là

Bài toán 1. Cho $2021$ số thực dương $a_1,\,a_2,\,\ldots,\,a_{2021}$ và $F$ là tập con của $\mathbb R$ thỏa mãn đồng thời các điều kiện dưới đây

  • $a_k^2\in F$ với mỗi chỉ số $k$, đồng thời $a_1+a_2+\ldots +a_{2021}\in F$.
  • Nếu $x,\,y\in F,\,y\ne 0$ thì $x-y\in F$ và $\dfrac{x}{y}\in F.$

Chứng minh rằng, $a_k\in F$ với mỗi chỉ số $k$.

Bài toán này, có lẽ được mở rộng ra từ bài

Read the rest of this entry »

Tags:

Có 3 định lí đồng cấu nhóm cơ bản, ở bài viết này chúng ta quan tâm đến việc mở rộng định lí đồng cấu thứ 2, từ đó áp dụng chứng minh bổ đề Zassenhaus. Ngoài ra ta cũng bàn về nhóm con chuẩn tắc và tính giao hoán.

Cho $(G,.)$ là một nhóm. Nhắc lại rằng $H$ là nhóm con chuẩn tắc của $G$ nếu $H$ là nhóm con và $xH=Hx$ với mọi $x\in G$.
Nói cách khác $H$ giao hoán với bất kì phần tử nào của $G$, do đó $H$ giao hoán với bất kì tập con nào của $G$. Từ ý tưởng đó ta có mệnh đề sau:

Read the rest of this entry »

Một trong những bài toán kinh điển nhất khi nghiên cứu các cấu trúc đại số là phân loại chúng, nghiên cứu xem với điều kiện gì thì hai cấu trúc như vậy đẳng cấu với nhau. Ta có thể làm điều này với các nhóm Abel hữu hạn bằng việc xét chúng như các module trên miền chính ($\mathbb{Z}$-module). Bài viết dựa trên chương 12 của [1].

I. Phân loại module hữu hạn sinh trên miền chính
Cho $A$ là miền chính ( vành mà mọi ideal đều sinh bởi 1 phần tử ).
Nói chung việc phân loại module tổng quát rất khó vì ta không có gì để đối chiếu chúng. Bài toán phân loại sẽ dễ dàng hơn khi ta xét trên module tự do, đặc biệt trên miền chính ta có một kết quả rất mạnh tương tự như với không gian véc tơ: module của một module tự do cũng là module tự do.

Read the rest of this entry »

Cho trước các đa thức hệ số thực là $f(x)$ và $g(x)$, trong đó $\deg g>0$ khi đó ta luôn có thể viết phân tích chính tắc của $g$ dưới dạng\[g\left( x \right) = c{p_1}{\left( x \right)^{{k_1}}}{p_2}{\left( x \right)^{{k_2}}} \ldots {p_n}{\left( x \right)^{{k_n}}}.\]Ở đây, $c$ là một hằng số thực khác $0$ (là hệ số bậc cao nhất của $g(x)$), còn $p_i(x)$ là các đa thức monic bất khả quy trên $\mathbb R[x]$, tức là các đa thức ở dạng $x-r_i$ hoặc $x^2+a_ix+b_i$ với $r_i,\,a_i,\,b_i$ là các số thực đồng thời $\Delta_i=a_i^2-4b_i<0$. Read the rest of this entry »

Tags: ,

Thông thường khi xét đa thức f $\in \mathbb{R}[x]$, f phân tích duy nhất được thành các đa thức bất khả quy. Câu hỏi được đặt ra khi ta thấy thế $\mathbb{R}$ bởi một trường, vành,… bất kì thì tính chất trên liệu có còn đúng? Xây dựng lí thuyết để trả lời câu hỏi này, ta sẽ nhận được những ứng dụng rất thú vị.
1. Mở đầu:
Bài viết này nghiên cứu đa thức trên cấu trúc tổng quát của $\mathbb{R}$, đó là TRƯỜNG và rộng hơn là VÀNH:
Định nghĩa 1: Tập hợp $K$ được trang bị 2 phép toán + và . thỏa mãn:
♥ $(K,+)$ là nhóm abel
♥ $K$ đóng với phép nhân
♥ Hai phép toán kết hợp, nghĩa là $\forall a,b,c \in K$ thì $a(b+c)=ab+ac$ và $(b+c)a=ba+ca$
Khi đó $K$ gọi là vành.
Thông thường ta kí hiệu 0 là đơn vị của phép “+” và 1 là đơn vị của phép “.” (nếu có)
Khi phép $.$ có đơn vị ta gọi $K$ là vành có đơn vị, khi phép $.$ giao hoán ta gọi $K$ là vành giao hoán. Đặc biệt, khi $(K$\ $\{0\},.)$ là nhóm abel thì $K$ gọi là trường. Read the rest of this entry »

“How to Solve It”  là tên một cuốn sách nổi tiếng của G.Pólya, một nhà sư phạm Toán Học nổi tiếng. Tôi mạo phép mượn nó làm tiêu đề cho chuỗi bài viết này, một chuỗi bài tôi muốn viết từ lâu. Nguyên nhân khoan hoãn và trù trừ cho dự định viết chuỗi bài này, vì tôi cảm thấy tự ti bởi năng lực bản thân, sợ viết ra rồi bị đánh giá là lên gân etc vv.. Tuy nhiên, do bản chất công việc phải làm hằng ngày, nên tôi lại hiểu rõ trách nhiệm mình cần làm. Thôi thì cứ viết lại những gì mình cảm nhận, hy vọng nó có ích với một số đối tượng nhất định. Read the rest of this entry »

Tags: , , , ,

Tập số thực có sự sắp tự hoàn chỉnh, nếu lấy mỗi số thực $r$ ra và đem so sánh với số $0$, thì có đúng ba trạng thái hệt như giới tính con người, đó là

  1. Không có dấu (buê-đê) nếu $r=0$.
  2. Dấu dương (man-lì) nếu $r>0$.
  3. Dấu âm (đàn bà) nếu $r<0$.

Với một đại lượng biến thiên $E$, khi đó có thể là $E$ bất biến dấu, không đổi dấu hoặc đổi dấu lung tung.. Nếu chúng ta lấy ra hai biểu thức chứa biến $x,\,y,\,..$ là $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$, ta sẽ nói $A$ và $A’$ tương đương về dấu trên miền $D$ nếu cứ với mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì trạng thái dấu của $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ là như nhau. Cụ thể là, tại mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ hoặc cùng bằng $0$ hoặc cùng dương, hoặc cùng âm. Ở phạm vi vài viết này, nếu $A$ và $A’$ tương đương về dấu trên $D$, tôi sẽ sử dụng ký hiệu\[A\mathop \sim\limits_D A’.\] Read the rest of this entry »

Tags: , ,

Có bạn hỏi mình bài toán này lúc đang đi chơi, nhìn cực kỳ rối ren, như sau

Bài toán. Tìm $f:\,\mathbb R\to\mathbb R$ giảm ngặt và thỏa mãn\[f(x + y) + f\left( {f(x) + f(y)} \right) = f\left( {f(x + f(y)) + f(y + f(x))} \right),\forall x,{\mkern 1mu} y \in\mathbb R. \] Read the rest of this entry »

Tags: ,

Ở IMO 2006, có bài đa thức như này

Bài toán N4 IMO 2006.  Cho $P(x)$ là một đa thức hệ số nguyên có bậc $n$ với $n>1$, với mỗi số nguyên dương $k$ ta ký hiệu $
P_k(x)=\underbrace{P(P(\ldots(P(x) \ldots))}_{k\; \text{lần}\;P}
$. Chứng minh rằng với mỗi số nguyên dương $k$ lớn hơn $1$, luôn có không quá $n$ nghiệm nguyên phân biệt của phương trình $P_k(x)=x$.

Hôm nay, đem dạy bài này cho một đội để thị phạm cách chui vào bụi rậm rồi chui ra.. Cuối cùng xuất được cái lời giải sau 😀 Read the rest of this entry »

Tags: , ,

Cho $f(x)$ và $g(x)$ là hai đa thức hệ số thực, chúng ta quan tâm đến vấn đề là khi nào hàm số $h:\,\mathbb R\to\mathbb R$ với quy tắc tương ứng $h(x)=f(g(x))$ sẽ là một hàm đơn điệu trên $\mathbb R$. Rõ ràng, khi $f(x)$ hoặc $g(x)$ là hàm hằng thì $h(x)$ cũng là hàm hằng, do đó ta chỉ quan tâm đền tình huống $\deg f,\,\deg g>0$.

Do $\deg h=\deg f.\deg g$, và nếu $\deg h$ là một số nguyên dương chẵn thì \[\mathop {\lim }\limits_{x \to + \infty } h\left( x \right)\mathop {\lim }\limits_{x \to – \infty } h\left( x \right) = + \infty .\]Từ đây thấy rõ ràng là khi một trong hai đa thức $f(x)$ hoặc $g(x)$ có bậc chẵn, thì $h(x)$ không thể là hàm đơn điệu trên $\mathbb R$. Cũng để ý rằng, nếu $f(g(x))$ là nghịch biến, thì $-f(g(x))$ là hàm đồng biến, thêm nữa là nếu $f(g(x))$ là hàm đồng biến thì sau việc lấy giới hạn ra vô cực, ta thấy là hệ số ứng với bậc cao nhất của nó phải cùng dấu, mà hệ số này lại cùng dấu với tích của hai hệ số ứng với bậc cao nhất của $f(x)$ và $g(x)$ (do $\deg f,\,\deg g$ đều lẻ). Vì lẽ đó, ta chỉ cần quan tâm đến câu hỏi sau Read the rest of this entry »

Tags: , ,

Chúng ta bàn đến việc phá các căn ở dạng $\sqrt{x^2+k}$, với $k$ là một hằng số. Trước tiên là một hoàn cảnh như sau.

Bài toán 1. Tính tích phân $I=\int \frac{d x}{\sqrt{x^{2}+1}}$.
Read the rest of this entry »

Tags: , ,

« Older entries