Articles by Nguyễn Minh Đức

You are currently browsing Nguyễn Minh Đức’s articles.

Ta sẽ làm nóng bằng một bài toán như sau:
Bài toán 1: Cho $a=\sqrt{2}+ \sqrt[3]{3}$.
Có tồn tại đa thức $f\in \mathbb{Q}[x]$ sao cho $f(a)=\sqrt{2}$?
Lời giải: Câu trả lời là có.
Thật vậy, $a- \sqrt{2}= \sqrt[3]{3}$. Lập phương hai vế ta được:
\[3=(a-\sqrt{2})^3=a^3-3\sqrt{2}a^2+6a-2\sqrt{2} \] Từ đó ta có $\sqrt{2}=\dfrac{a^3+6a-3}{3a^2+2}$
Mặt khác, ta dễ kiểm tra \[g(x)=(x^3+6x-3)^2-2(3x^2+2)^2=x^6-6x^4-6x^3+12x^2-36x+1\] là đa thức tối tiểu của $a$.
Đặt $h(x)=3x^2+2$. Ta thấy ngay $f$ và $g$ nguyên tố cùng nhau.
Giờ ta áp dụng [1] để tìm đa thức $p,q\in\mathbb{Q}$ sao cho: (chỗ này mình lười tính quá)
\[ph+qg=c\in\mathbb{Q}\] Khi đó $p(a)h(a)=c$ nên $\sqrt{2}=\dfrac{a^3+6a-3}{3a^2+2}=\frac{1}{c}(a^3+6a-3).p(a)$
Do đó $f(x)= \frac{1}{c}(x^3+6x-3).p(x)$

Read the rest of this entry »

Cho vành Euclid $A$ và $f,g\in A$ khác $0$. Khi đó tồn tại $d\in A$ sao cho $(f)+(g)=(d)$, ta gọi $d$ là một ước chung lớn nhất của $f,g$, theo đó tồn tại $a,b\in A$ nguyên tố cùng nhau sao cho:
\[af+bg=d\] Ta đã biết rằng trên vành Euclid, ta có thể tìm ước chung lớn nhất dựa trên thuật chia Euclid, nhưng việc tìm hai số $a,b$ để $af+bg=d$ không hiển nhiên chút nào. Bài viết này đi tìm một thuật toán giải quyết bài toán trên cho trường hợp vành số nguyên $\mathbb{Z}$

Ta thống nhất phép chia dư trong bài viết như sau: Với hai số nguyên $a,b$ khác $0$ bất kì, tồn tại duy nhất cặp số nguyên $q,r$ thỏa mãn $0\le r\le |b|$ sao cho $a=bq+r$
Cho hai số nguyên $f,g$ khác $0$. Dùng thuật chia Euclid, ta tìm được ước chung lớn nhất $d$ của chúng là một số tự nhiên.

Read the rest of this entry »

Có 3 định lí đồng cấu nhóm cơ bản, ở bài viết này chúng ta quan tâm đến việc mở rộng định lí đồng cấu thứ 2, từ đó áp dụng chứng minh bổ đề Zassenhaus. Ngoài ra ta cũng bàn về nhóm con chuẩn tắc và tính giao hoán.

Cho $(G,.)$ là một nhóm. Nhắc lại rằng $H$ là nhóm con chuẩn tắc của $G$ nếu $H$ là nhóm con và $xH=Hx$ với mọi $x\in G$.
Nói cách khác $H$ giao hoán với bất kì phần tử nào của $G$, do đó $H$ giao hoán với bất kì tập con nào của $G$. Từ ý tưởng đó ta có mệnh đề sau:

Read the rest of this entry »

Phần 1 về phân loại nhóm hữu hạn ở http://maths.vn/phan-loai-nhom-huu-han/
Bài viết này chúng ta sẽ bàn về ứng dụng của những lý thuyết ta xây dựng ở phần trước vào chứng minh định lí Sylow cho nhóm giao hoán

Định lí Sylow thứ nhất: Cho $(G,+)$ là nhóm Abel với $|G|=p^r.m$ với $p$ là số nguyên tố,$r\ge 1$ và $(m,p)=1$. Khi đó tồn tại một nhóm con $H$ của $G$ có cấp $p^r$ và ta gọi đó là $p$-nhóm con Sylow của $G$.

Read the rest of this entry »

Một trong những bài toán kinh điển nhất khi nghiên cứu các cấu trúc đại số là phân loại chúng, nghiên cứu xem với điều kiện gì thì hai cấu trúc như vậy đẳng cấu với nhau. Ta có thể làm điều này với các nhóm Abel hữu hạn bằng việc xét chúng như các module trên miền chính ($\mathbb{Z}$-module). Bài viết dựa trên chương 12 của [1].

I. Phân loại module hữu hạn sinh trên miền chính
Cho $A$ là miền chính ( vành mà mọi ideal đều sinh bởi 1 phần tử ).
Nói chung việc phân loại module tổng quát rất khó vì ta không có gì để đối chiếu chúng. Bài toán phân loại sẽ dễ dàng hơn khi ta xét trên module tự do, đặc biệt trên miền chính ta có một kết quả rất mạnh tương tự như với không gian véc tơ: module của một module tự do cũng là module tự do.

Read the rest of this entry »

Ta đã tiếp cận nhiều bài toán cấp 2, được cho ở dạng chứng minh một biểu thức đối xứng nào đó là số hữu tỉ, ví dụ như:

Bài toán 1: Chứng minh rằng: $a^4+b^4$ là số hữu tỉ với $a=1+\sqrt{5}$ và $b=1-\sqrt{5}$

Bài toán 2: Chứng minh rằng: $a^3b+b^4$ không là số hữu tỉ với $a=1+\sqrt{5}$ và $b=1-\sqrt{5}$

Nhận thấy ngay rằng $a,b$ ở trên đều là nghiệm vô tỉ của đa thức hữu tỉ nào đó.
Vậy thì tại sao khi biểu thức của các nghiệm là đối xứng thì nó là hữu tỉ?
Liệu trường hợp biểu thức đó không đối xứng thì có phải nó luôn vô tỉ không? Nếu không thì khi nào nó xảy ra? Read the rest of this entry »

Thông thường khi xét đa thức f $\in \mathbb{R}[x]$, f phân tích duy nhất được thành các đa thức bất khả quy. Câu hỏi được đặt ra khi ta thấy thế $\mathbb{R}$ bởi một trường, vành,… bất kì thì tính chất trên liệu có còn đúng? Xây dựng lí thuyết để trả lời câu hỏi này, ta sẽ nhận được những ứng dụng rất thú vị.
1. Mở đầu:
Bài viết này nghiên cứu đa thức trên cấu trúc tổng quát của $\mathbb{R}$, đó là TRƯỜNG và rộng hơn là VÀNH:
Định nghĩa 1: Tập hợp $K$ được trang bị 2 phép toán + và . thỏa mãn:
♥ $(K,+)$ là nhóm abel
♥ $K$ đóng với phép nhân
♥ Hai phép toán kết hợp, nghĩa là $\forall a,b,c \in K$ thì $a(b+c)=ab+ac$ và $(b+c)a=ba+ca$
Khi đó $K$ gọi là vành.
Thông thường ta kí hiệu 0 là đơn vị của phép “+” và 1 là đơn vị của phép “.” (nếu có)
Khi phép $.$ có đơn vị ta gọi $K$ là vành có đơn vị, khi phép $.$ giao hoán ta gọi $K$ là vành giao hoán. Đặc biệt, khi $(K$\ $\{0\},.)$ là nhóm abel thì $K$ gọi là trường. Read the rest of this entry »

Bài toán: Cho đa giác đều $H$ hữu hạn đỉnh. Ta tô màu các đỉnh đa giác bằng một số màu thỏa mãn các đỉnh cùng màu tạo nên một đa giác đều. Chứng minh rằng tồn tại 2 đa giác đều đơn sắc đồng dạng. Read the rest of this entry »

Tính chuẩn tắc trong phần lớn các tài liệu, chỉ được định nghĩa liên quan đến các nhóm con của một nhóm cho trước. Điều này vô tình gò bó một tính chất độc lập, vậy nên bài viết này sẽ mở rộng tính chuẩn tắc thông thường. Read the rest of this entry »

Câu hỏi: Khi nào 2 nhóm $(A,B)$ thỏa mãn tồn tại $f$ để $(A,B)=(Kerf,Imf)$.

 Để trả lời câu hỏi này,chúng ta xây dựng nên nhóm con chuẩn tắc,nhóm thương ,cũng như chỉ ra sự quan hệ giữa đồng cấu với hạt nhân và ảnh của một đồng cấu, qua đó là góc nhìn quan hệ nhóm con chuẩn tắc dưới dạng đồng cấu nhóm
I.Mở đầu
-Khái niệm về nhóm,nhóm con và khái niệm cơ bản về đồng cấu,các loại đồng cấu trong [1]
-Cho nhóm $G$,kí hiệu $e_G$ là phần tử đơn vị của $G$
-Cho $f:G \rightarrow H$ là một đồng cấu: Read the rest of this entry »