Bài viết này trình bày một số kết quả về mở rộng và hạn chế ideal, cụ thể trong trường hợp vành thương, trên vành các thương và trên mở rộng nguyên
Cho $A$ là một vành. Nếu $\mathfrak{a}$ là ideal của $A$ thì ta kí hiệu $\mathfrak{a}\lhd A$. Ngoài ra ta gọi $I(A)$ là họ các ideal trong $A$, $Spec(A)$ là họ các ideal nguyên tố trong $A$, $M(A)$ là họ các ideal cực đại trong $A$.
Với miền nguyên $A$ và tập con nhân tính $S$ của $A$ ($0\notin S$), kí hiệu $S^{-1}A=\{a/s|a\in A,s\in S\}$ là vành các thương trên $A$ đối với $S$. Đặc biệt trong trường hợp $S=A-\{0\}$, ta kí hiệu trường các thương của $A$ bởi $F(A)=(A-\{0\})^{-1}A$.
Còn trường hợp $S=S_{\mathfrak{p}}=A-\mathfrak{p}$ với $\mathfrak{p}$ là một ideal nguyên tố trong $A$ thì ta kí hiệu $A_{\mathfrak{p}}=S_{\mathfrak{p}}^{-1}A$.
Một số kiến thức cơ bản về vành và ideal, bạn đọc có thể xem trong chương I của [1].
Phản Hồi