Tháng Một 2018

You are currently browsing the monthly archive for Tháng Một 2018.

Bài toán ở dưới đây, là bài Số Học trong đề thi VMO năm 2018 (bài số 6), một bài toán cổ điển về dãy Lucas. Nói chung, bài này tính chất Số Học thì ít mà chủ yếu là màu sắc Đại Số sơ cấp.

Bài toán. Cho dãy số $(x_n)$ xác định bởi $x_0=2,x_1=1$ và $$x_{n+2}=x_{n+1}+x_{n}\left ( n\geq 0 \right ).$$

  1. Với $n\geq 1$, chứng minh rằng nếu $x_n$ là số nguyên tố thì $n$ là số nguyên tố hoặc $n$ không có ước nguyên tố lẻ.
  2. Tìm các cặp số nguyên không âm $(m,n)$ sao cho $x_n$ chia hết cho $x_m$.

Lời giải. Dãy số trong bài toán trên gọi là dãy Lucas, và tất cả bài toán gói gọn trong công thức sau Read the rest of this entry »

Tags: , , , , ,

Bài toán dưới đây là bài 4 trong đề VMO 2018, bài toán gốc của nó khá xinh, là của anh Trần Nam Dũng. Còn bài này bị dao kéo đi, nhìn xấu quá.

Bài toán. Gọi $(C)$ là đồ thị hàm số $y=\sqrt[3]{x^2}$ trong mặt phẳng toạ độ $(Oxy)$. Một đường thẳng $(d)$ thay đổi cắt $(C)$ tại ba điểm phân biệt có hoành độ lần lượt là $x_1;\,x_2;\,x_3$.

  1.  Chứng minh rằng đại lượng $\sqrt[3]{{\dfrac{{{x_1}{x_2}}}{{x_3^2}}}} + \sqrt[3]{{\dfrac{{{x_2}{x_3}}}{{x_1^2}}}} + \sqrt[3]{{\dfrac{{{x_3}{x_1}}}{{x_1^2}}}}$ là một hằng số.
  2. Chứng minh rằng
    \[\sqrt[3]{{\frac{{x_1^2}}{{{x_2}{x_3}}}}} + \sqrt[3]{{\frac{{x_2^2}}{{{x_3}{x_1}}}}} + \sqrt[3]{{\frac{{x_3^2}}{{{x_1}{x_2}}}}} \ge – \frac{{15}}{4}.\]

Dưới đây là lời giải chỉ cần dùng các kiến thức THCS của tôi.

Lời giải. Ta thấy phương trình của $(d)$ ở dạng $(d):\;y=kx+l$ với $kl\ne 0$. Khi đó $x_1;\,x_2;\,x_3$ là nghiệm của phương trình
\[kx + l = \sqrt[3]{{{x^2}}}.\]
Đặt $\dfrac{1}{\sqrt[3]{{{x_i}}}}=t_i$ thì $t_i$ là nghiệm của phương trình
\[lx^3-x+k=0.\]
Do đó mà ta có
\[\begin{array}{l}
\sqrt[3]{{\dfrac{{{x_1}{x_2}}}{{x_3^2}}}} + \sqrt[3]{{\dfrac{{{x_2}{x_3}}}{{x_1^2}}}} + \sqrt[3]{{\dfrac{{{x_3}{x_1}}}{{x_1^2}}}} &= \dfrac{{t_1^3 + t_2^3 + t_3^3}}{{{t_1}{t_2}{t_3}}}\\
&= 3 + \dfrac{{\left( {{t_1} + {t_2} + {t_3}} \right)\left( {t_1^2 + t_2^2 + t_3^2 – {t_1}{t_2} – {t_2}{t_3} – {t_3}{t_1}} \right)}}{{{t_1}{t_2}{t_3}}}
\end{array}.\]
Theo Viettè thì $t_1+t_2+t_3=0$, cho nên
\[\sqrt[3]{{\dfrac{{{x_1}{x_2}}}{{x_3^2}}}} + \sqrt[3]{{\dfrac{{{x_2}{x_3}}}{{x_1^2}}}} + \sqrt[3]{{\dfrac{{{x_3}{x_1}}}{{x_1^2}}}}=3.\]
Lại đi đặt $\sqrt[3]{{\dfrac{{{x_1}{x_2}}}{{x_3^2}}}} =a;\, \sqrt[3]{{\dfrac{{{x_2}{x_3}}}{{x_1^2}}}} =b;\, \sqrt[3]{{\dfrac{{{x_3}{x_1}}}{{x_1^2}}}}=c$ để có
\[a+b+c=3;\;abc=1.\]
Khi đó thì
\[M=\sqrt[3]{{\frac{{x_1^2}}{{{x_2}{x_3}}}}} + \sqrt[3]{{\frac{{x_2^2}}{{{x_3}{x_1}}}}} + \sqrt[3]{{\frac{{x_3^2}}{{{x_1}{x_2}}}}} =ab+bc+ca.\]
Ta thấy trong $a;\,b;\,c$ phải có 2 số âm và một số dương, kẻo không thì theo AM-GM có $a=b=c=1$ mâu thuẫn với việc ba giao điểm phân biệt. Ta giả sử $a>0>b> c$ thì có
\[a – 3 = – b – c \ge 2\sqrt {bc} = \frac{2}{{\sqrt a }}.\]
Từ đó có $a> 4$ và do đó
\[M = a\left( {3 – a} \right) + \frac{1}{a} = – \frac{{15}}{4} – \frac{{{{\left( {2a – 1} \right)}^2}\left( {a – 4} \right)}}{{4a}} < – \frac{{15}}{4}.\]

Tags: , , , ,

Bài toán dưới đây là bài 1 trong đề VMO 2018, nói chung là một bài cho điểm.

Bài toán. Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} – \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]

  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]
    Dưới đây là lời giải của tôi. Read the rest of this entry »

Tags: , , , ,