Phương Trình Hàm

You are currently browsing articles tagged Phương Trình Hàm.

Tập số thực có sự sắp tự hoàn chỉnh, nếu lấy mỗi số thực $r$ ra và đem so sánh với số $0$, thì có đúng ba trạng thái hệt như giới tính con người, đó là

  1. Không có dấu (buê-đê) nếu $r=0$.
  2. Dấu dương (man-lì) nếu $r>0$.
  3. Dấu âm (đàn bà) nếu $r<0$.

Với một đại lượng biến thiên $E$, khi đó có thể là $E$ bất biến dấu, không đổi dấu hoặc đổi dấu lung tung.. Nếu chúng ta lấy ra hai biểu thức chứa biến $x,\,y,\,..$ là $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$, ta sẽ nói $A$ và $A’$ tương đương về dấu trên miền $D$ nếu cứ với mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì trạng thái dấu của $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ là như nhau. Cụ thể là, tại mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ hoặc cùng bằng $0$ hoặc cùng dương, hoặc cùng âm. Ở phạm vi vài viết này, nếu $A$ và $A’$ tương đương về dấu trên $D$, tôi sẽ sử dụng ký hiệu\[A\mathop \sim\limits_D A’.\] Read the rest of this entry »

Tags: , ,

Có bạn hỏi mình bài toán này lúc đang đi chơi, nhìn cực kỳ rối ren, như sau

Bài toán. Tìm $f:\,\mathbb R\to\mathbb R$ giảm ngặt và thỏa mãn\[f(x + y) + f\left( {f(x) + f(y)} \right) = f\left( {f(x + f(y)) + f(y + f(x))} \right),\forall x,{\mkern 1mu} y \in\mathbb R. \] Read the rest of this entry »

Tags: ,

Bài toán. Tìm tất cả các hàm $f:\,\mathbb R^+\to\mathbb R$ thỏa mãn \[f\left( x \right) – f\left( y \right) = \left( {x – y} \right)f’\left( {\sqrt {xy} } \right),\quad\forall\,x,\,y\in\mathbb R^+.\] Read the rest of this entry »

Tags: , ,

Bài toán. Cho các số $p,\,q>0$ thỏa mãn $p+q=1$, tìm các hàm $f:\,\mathbb R\to\mathbb R$ thỏa mãn$$\frac{f(x)-f(y)}{x-y}=f^{\prime}(p x+q y), \quad \forall x \neq y.$$ Read the rest of this entry »

Tags: , ,