Đây là câu hỏi của một bạn giáo viên trên group của các giáo viên . Tôi thấy nó là một câu hỏi giàu ý nghĩa, do đó tôi viết bài này. Trước tiên, xin nhắc lại là vấn đề được bạn giáo viên trong group đó đặt ra như sau.
Bài toán. Cho $a$ là một số thực dương còn $\alpha$ là một số vô tỷ, giả sử có hai dãy số hữu tỷ cùng hội tụ về $\alpha$ là $\left(r_n\right)_{n\in\mathbb N}$ và $\left(t_n\right)_{n\in\mathbb N}$, xét hai dãy cho bởi sự gán trị\[{u_n} = {a^{{r_n}}},\quad {v_n} = {a^{{t_n}}},\;\forall {\mkern 1mu} n \in \mathbb N.\]Chứng minh rằng, $\left(u_n\right)_{n\in\mathbb N}$ và $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến một giới hạn.
Chú ý rằng, nếu bài toán vừa đưa ra được giải quyết, thì ta sẽ có được định nghĩa tốt cho $a^{\alpha}$. Theo đó thì, giá trị của $a^{\alpha}$ chính là kết quả giới hạn duy nhất mà các dãy $\left(u_n\right)_{n\in\mathbb N}$ và $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến. Giờ, ta sẽ xử lý bài toán kia. Read the rest of this entry »
Phản Hồi