Định Giá p-adic
You are currently browsing articles tagged Định Giá p-adic.
Bài viết này, viết về một kỹ năng cơ bản nhưng quan trọng ở trong Số Học. Đó là phép nâng bậc đồng dư. Nội dung bài viết bắt đầu từ một bài toán cũ kỹ và kinh điển, sau đó là sự khái quát hóa bài toán đó.
Mở đầu
Ở Số Học sơ cấp, một vấn đề cơ bản thường xuyên chúng ta phải xử lý, đó là xét số dư trong phép chia cho một số nguyên dương $m$ cho trước. Thường thì khi đối diện bài toán đó, trừ những trường hợp quá tầm thường, thì một ý tưởng rất bài bản là phân tích $m$ ra thừa số nguyên tố (hành vi đó được bảo kê nhờ định lý cơ bản của Số Học). Sau đó, bài toán quy về xét đồng dư theo các mod ${p^k}$, trong đó $p$ là ước nguyên tố của $m$ còn $k$ là số mũ của $p$ khi phân tích $m$ ra thừa số nguyên tố. Nếu ta xử lý được các vấn đề ở khâu đó, chúng ta sẽ có được câu trả lời ở mod $m$ nhờ ánh xạ phục dựng ở định lý CRT.
Vấn đề là, để xử lý theo mod $p^k$ như đã nói ở trên với $k>1$, một tư duy tự nhiên là đầu tiên ta phải xử lý được mod $p$ đã. Sau đó cần những kỹ năng, để nâng dần lên mod $p^2$, và lần hồi dần lên mod $p^k$.
Read the rest of this entry »
Tags: Định Giá p-adic, LTE
Ở trong bài viết này, nhân tiện việc xử lý bài Croatia TST2011 tôi nói về khái niệm ước số chung lớn nhất của hai số hữu tỷ, đồng thời là khái niệm về hai số hữu tỷ nguyên tố cùng nhau. Trong bài viết, tôi ký hiệu tập các số nguyên tố là $\mathbb P$, còn để thay cho diễn đạt “hai số hữu tỷ $x$ và $y$ nguyên tố cùng nhau”, tôi sẽ sử dụng ký hiệu $x\bot y$.
Xin nêu lại nội dung bài toán trong đề thi Croatia kia, như sau
Read the rest of this entry »
Tags: Định Giá p-adic, GCD, Nền Tảng
Tình cờ, mình nhìn thấy cái bài này trên THTT, nội dung như sau đây
Bài toán. Cho $n$ là một số nguyên dương, chứng minh rằng phải có $3^{n+1}$ bé hơn số ${\left( {\frac{{3 + \sqrt 5 }}{2}} \right)^{{3^n}}} + {\left( {\frac{{3 – \sqrt 5 }}{2}} \right)^{{3^n}}}$, đồng thời cái số đó sẽ chia hết cho $3$.
Read the rest of this entry »
Tags: Định Giá p-adic, Đồng Dư, ideal, LTE, Số Học, Vành bậc 2
Bài toán. Cho $a_1,\,a_2,\,\ldots$ là một dãy vô hạn các số nguyên dương. Giả sử tồn tại số nguyên dương $N$ sao cho\[\frac{{{a_1}}}{{{a_2}}} + \frac{{{a_2}}}{{{a_3}}} + \ldots + \frac{{{a_{n – 1}}}}{{{a_n}}} + \frac{{{a_n}}}{{{a_1}}} \in \mathbb Z\quad\forall\,n\ge N.\]Chứng minh rằng tồn tại số nguyên dương $M$ sao cho $a_{m+1}=a_m\;\forall\,m\ge M$.
Lời giải. Với $p$ là một số nguyên tố, trước tiên ta có bổ đề (tính chất của định giá phi Archimedean)\[{v_p}\left( {x + y} \right) \ge \min \left\{ {{v_p}\left( x \right),\, {v_p}\left( y \right)} \right\}\quad\forall\, x,\,y\in\mathbb Q.\] Read the rest of this entry »
Tags: Dãy Số Nguyên, Định Giá p-adic, IMO, Số Học, Ước Nguyên Tố Của Dãy Nguyên
Với các số nguyên dương $m,\,n$ cho trước và $a$ là một số nguyên nguyên tố cùng nhau với $m$, xét phương trình đồng dư\begin{align}x^n\equiv a\pmod m,\qquad (1).\end{align}Ở các phần phía trước bao gồm http://songha.maths.vn/khai-niem-thang-du-bac-cao-va-can-theo-modulo/, http://songha.maths.vn/dieu-kien-la-mot-thang-du-bac-cao/ và http://songha.maths.vn/so-cac-thang-du-bac-cao/ thì về cơ bản thì chúng ta đã giải quyết được hai vấn đề, đó là Read the rest of this entry »
Tags: Căn Nguyên Thuỷ, Căn theo modulo, Cấp và căn theo modulo, Định Giá p-adic, Định Lý Thặng Dư Trung Hoa, Số Học, Thặng Dư Bậc Cao, Thặng Dư Bậc Hai
Ở bài viết về điều kiện để là thặng dư bậc cao ở http://songha.maths.vn/dieu-kien-la-mot-thang-du-bac-cao/ , ta đã chỉ ra rằng nếu $m=m_1m_1$ với $m_1,\,m_2\in\mathbb Z^+$ trong đó $\gcd\left(m_1,\,m_2\right)=1$ và $n$ là một số nguyên dương. Khi đó số nguyên $a$ nguyên tố cùng nhau với $m$ và là một thặng dư bậc $n$ theo mod $m$ nếu và chỉ nếu $a$ vừa là thặng dư bậc $n$ theo mod $m_1$ và đồng thời là thặng dư bậc $n$ theo mod $m_2$.
Bây giờ với $a_1,\,a_2$ lần lượt là các thặng dư bậc $n$ theo các mod $m_1,\,m_2$ tương ứng. Lúc đó, lại theo định lý thặng dư Trung Hoa sẽ tồn tại duy nhất $a\in\mathcal U_m$ sao cho Read the rest of this entry »
Tags: Căn Nguyên Thuỷ, Căn theo modulo, Cấp và căn theo modulo, Định Giá p-adic, Định Lý Thặng Dư Trung Hoa, Số Học, Thặng Dư Bậc Cao, Thặng Dư Bậc Hai
Cho các số nguyên dương $m,\,n$ và số nguyên $a$ thỏa mãn $\gcd(a,\,m)=1$, giả sử phân tích ra thừa số nguyên tố của $m$ là\[m=p_1^{k_1}p_2^{k_2}\ldots p_t^{k_t}.\]Trong đó, $k_i\in\mathbb{Z}^+,\,p_i\in\mathbb P,\;\forall\,i=\overline{1,\,t}$ và $p_1<p_2<\ldots<p_t$.
Nếu $a$ là một thặng dư bậc $n$ theo mod $m$, thì từ $a\equiv r^n\pmod m$ với $r$ là một căn bậc $n$ của $a$ theo mod $m$, ta có Read the rest of this entry »
Tags: Căn Nguyên Thuỷ, Căn theo modulo, Cấp và căn theo modulo, Định Giá p-adic, Số Học, Thặng Dư Bậc Cao, Thặng Dư Bậc Hai
Rất nhiều vấn đề trong Số Học liên quan đến sự tồn tại vô hạn các số nguyên tố trong một dãy nguyên. Ví dụ như định lý Dirichlet, các số nguyên tố Fermat hay các số nguyên tố Mersene. Một vấn đề đơn giản hơn, đó là nói đến các ước nguyên tố của phần tử trong dãy. Bài viết này bàn về khái niệm ước nguyên tố của một dãy số nguyên, và tập các ước nguyên tố đó. Phạm vi bài viết là ở mức độ các bài toán sơ cấp, mặc dù vấn đề trong bài vẫn được nghiên cứu ở lý thuyết Số cao cấp. Read the rest of this entry »
Tags: Định Giá p-adic, Định Lý Euler, Định Lý Fermat bé, Định Lý Polya, Định Lý Schur, Định Lý Thặng Dư Trung Hoa, Số Học, Ước Nguyên Tố Của Dãy Nguyên
Với $n$ là một số nguyên dương và $p$ là một số nguyên tố. Khi phân tích $n!$ ra thừa số nguyên tố, ta quan tâm đến bậc của $p$ trong phân tích đó. Và có định lý của Legendre như sau.
Định lý 11.1. Với $p$ là số nguyên tố. Lúc đó số mũ đúng của $p$ trong phân tích ra thừa số nguyên tố của $n!$ là \[v_p\left(n!\right)=\left\lfloor {\dfrac{n}{{{p^1}}}} \right\rfloor + \left\lfloor {\dfrac{n}{{{p^2}}}} \right\rfloor + \left\lfloor {\dfrac{n}{{{p^3}}}} \right\rfloor + \ldots \]
Để ý rằng, chỉ có hữu hạn các số hạng khác không trong tổng trên. Read the rest of this entry »
Tags: Công Thức Legendre, Định Giá p-adic, Số Học, Tổ Hợp
Bài toán sau đây có sử dụng đến định giá p-adic, nội dung như sau
Bài toán. Cho số nguyên tố $p$ và các số tự nhiên $x;\,y;\,m$, với $x;\,y>1$ thỏa mãn \[\frac{x^p+y^p}{2}=\left(\frac{x+y}{2}\right)^m.\] Chứng minh rằng $m=p$.
Lời giải. Giả sử $m\ne p$, theo bất đẳng Jensen ta có\[{\left( {\frac{{x + y}}{2}} \right)^m} = \frac{{{x^p} + {y^p}}}{2} \ge {\left( {\frac{{x + y}}{2}} \right)^p}.\]Từ đó, $m>p\ge 2$ ta giả sử $\gcd(x;\,y)=d$ và viết $x=da;\,y=db$ với $\gcd(a;\,b)=1$ để có\[{2^{m – 1}}\left( {{a^p} + {b^p}} \right) = {d^{m – p}}{\left( {a + b} \right)^m}.\] Read the rest of this entry »
Tags: Bất Đẳng Thức, Định Giá p-adic, Phương Trình Nghiệm Nguyên, Số Học
1. Cho số nguyên dương $m$, và $n$ (với $n>1$) số nguyên khác $0$ là $x_1,\,x_2,\,\ldots ,\,x_n$. Biết rằng số nguyên tố $p$ thỏa mãn $p^m\mid x_1$ còn $x_k$ không chia hết cho $p^m$ với mọi $k>1$. Chứng minh rằng:\[\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \ldots + \frac{1}{{{x_n}}} \notin \mathbb Z.\]
2. Cho các số nguyên dương $a,b,c$ thỏa mãn $\gcd (a,\,b,\,c)=1$ và $$a\mid bc,\;b\mid ca,\;c\mid ab.$$ Chứng minh rằng $\dfrac{bc}{a}$ là một số chính phương.
Read the rest of this entry »
Tags: Chia Hết, Định Giá p-adic, GCD, IMO, LCM, Số Học
Phản Hồi