Dãy Số

You are currently browsing articles tagged Dãy Số.

Trong cái đề thi minh hoạ cho đề thi THPT QG của bộ Dục, có bài toán sau đây.

Bài toán 1. Cho $f(x)$ là một hàm liên tục trên $\mathbb R$ và thỏa mãn \[xf\left( {{x^3}} \right) + f\left( {1 – {x^2}} \right) = – {x^{10}} + {x^6} – 2x,\quad \forall {\mkern 1mu} x \in \mathbb R.\]Tính tích phân $I=\displaystyle{\int\limits_0^1 {f\left( x \right)dx.}}$

Chép như thế, là chưa có đầy đủ, bởi vì dưới nội dung đã nêu theo đề gốc còn 4 cái đáp án A, B, C, D cho các cháu học sinh chúng nó chọn. Mình không quan tâm cái đó, và vì tính tích phân chậm, nên cái mình quan tâm là bài toán sau. Read the rest of this entry »

Tags: , ,

Trong đề thi chọn đội VMO của Khánh Hòa, có bài toán sau đây

Bài toán 1. Chứng minh rằng với mỗi số nguyên dương $n$, đều tồn tại duy nhất một cặp số nguyên dương $(a,\,b)$ sao cho \[n = a + \frac{{\left( {a + b – 1} \right)\left( {a + b – 2} \right)}}{2}.\]

Bài toán này, nhìn bề ngoài rõ ràng là một bài Số Học, và ta cũng có những lời giải thuần Số Học cho nó. Read the rest of this entry »

Tags: , , , ,

Chúng ta quan tâm đến khẳng định sau.

Mệnh đề 1. Cho $\mathbb I$ là một gian $\mathbb R$, hàm $f(x)$ liên tục và có đạo hàm trên $\mathbb I$. Giả sử với mỗi số thực $x\in\mathbb I$, ta đều có $f'(x)\ge 0$ và tồn tại một dãy số chứa tất cả các nghiệm của phương trình $f'(x)=0$. Khi đó, $f(x)$ là hàm đồng biến trên $\mathbb R$. Read the rest of this entry »

Tags: , , , ,

Cho hàm số $f:\;\mathbb R\to\mathbb R^+$ liên tục và thỏa mãn\[\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0.\]

  1. Chứng minh rằng tồn tại giá trị lớn nhất của $f(x)$ trên $\mathbb R$.
  2. Chứng minh rằng tồn tại hai dãy số $\left(x_n\right)$ và $\left(x_n\right)$ cùng hội tụ đến chung một giới hạn, $x_n<y_n$ với mọi số nguyên dương $n$ và\[ f\left( {{x_n}} \right) = f\left( {{y_n}} \right),\quad \;\;\;\forall {\mkern 1mu} n\in\mathbb N^*.\]

Read the rest of this entry »

Tags: , ,

Bài toán Dãy số nguyên $\left( {{x_n}} \right)$, thỏa $0\le x_0<x_1\le 100$ và\[{x_{n + 2}} = 7{x_{n+1}} – {x_n} + 280,\;\;\;{\kern 1pt} \forall {\mkern 1mu} n \in \mathbb N.\]

  1. Với $x_0=2,\,x_1=3$, chứng minh rằng tổng các ước số dương của $x_{n}x_{n+1}+x_{n+1}x_{n+2}+x_{n+2}x_{n+3}+2018$ là bội số của $24$.
  2. Tìm các cặp $\left(x_0,\,x_1\right)$ sao cho $x_nx_{n+1}+2019$ là số chính phương với vô số số tự nhiên $n$.

Read the rest of this entry »

Tags: , , ,

Cuộc sống, được chúng ta nhận thức qua sự hiện hữu và vận động của các thành tố trong nó. Khi tồn tại để vận động và phát triển, các đối tượng tương tác với nhau theo những quy luật được xác định, để rồi có những ảnh hưởng đến giá trị về lượng và chất tương ứng. Chính sự tương tác ảnh hưởng qua lại giữa các đối tượng của cuộc sống, giúp chúng ta nhận thức được bản chất các đối tượng đó theo nhiều góc nhìn. Read the rest of this entry »

Tags: , , , , , , , , , , ,

Bài 1. Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} – \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]

  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]link: http://mathscope.org/showthread.php?t=51561

Read the rest of this entry »

Tags: , , , , , , , , ,

Bài toán ở dưới đây, là bài Số Học trong đề thi VMO năm 2018 (bài số 6), một bài toán cổ điển về dãy Lucas. Nói chung, bài này tính chất Số Học thì ít mà chủ yếu là màu sắc Đại Số sơ cấp.

Bài toán. Cho dãy số $(x_n)$ xác định bởi $x_0=2,x_1=1$ và $$x_{n+2}=x_{n+1}+x_{n}\left ( n\geq 0 \right ).$$

  1. Với $n\geq 1$, chứng minh rằng nếu $x_n$ là số nguyên tố thì $n$ là số nguyên tố hoặc $n$ không có ước nguyên tố lẻ.
  2. Tìm các cặp số nguyên không âm $(m,n)$ sao cho $x_n$ chia hết cho $x_m$.

Lời giải. Dãy số trong bài toán trên gọi là dãy Lucas, và tất cả bài toán gói gọn trong công thức sau Read the rest of this entry »

Tags: , , , , ,

Bài toán dưới đây là bài 1 trong đề VMO 2018, nói chung là một bài cho điểm.

Bài toán. Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} – \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]

  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]
    Dưới đây là lời giải của tôi. Read the rest of this entry »

Tags: , , , ,