Đạo Hàm

You are currently browsing articles tagged Đạo Hàm.

Đọc sách gặp một vấn đề khá thú vị, nên tôi trình bày ra đây.Cho $f,\,g:\;\mathbb R\to\mathbb R$ là các hàm có đạo hàm (khả vi) trên khắp $\mathbb R$, khi đó thì chắc chắn $f(x)+g(x)$ cũng là một hàm có đạo hàm trên $\mathbb R$, và ta có công thức\[{f^\prime }\left( x \right) + {g^\prime }\left( x \right) = {\left( {f\left( x \right) + g\left( x \right)} \right)^\prime }.\] Câu hỏi rất lăn tăn và hồn nhiên đặt ra là: Khi mà đã sẵn có $f^\prime(x)$ và $g^\prime(x)$ trên khắp $\mathbb R$, thì liệu có luôn tồn tại hay không một hàm $h(x)$ cũng khả vi trên khắp $\mathbb R$ để sao cho với mỗi số thực $x$ ta đều có đẳng thức $$f^\prime(x)g^\prime(x)=h^\prime(x)?$$

Trong tình huống $f$ và $g$ khả vi liên tục trên $\mathbb R$, câu trả lời ắt là tầm thường. Read the rest of this entry »

Tags: , ,

Cho $\mathbb I$ là một gian trên $\mathbb R$, một hàm $f:\,\mathbb I\to\mathbb R$ gọi là lồi trên $\mathbb I$ nếu và chỉ nếu với các số $a,\,b\in\mathbb I$ bất kỳ và $k\in (0;\,1)$ tùy ý, ta luôn có được bất đẳng thức sau\[f\left( {ka + \left( {1 – k} \right)b} \right) \le kf\left( a \right) + \left( {1 – k} \right)f\left( b \right).\] Bài viết này, có mục đích là chứng minh định lý sau đây

Định lý 1. Cho $\mathbb I$ là một khoảng mở của đường thẳng thực và hàm số $f:\,\mathbb I\to\mathbb R$ lồi trên $\mathbb I$, khi đó $f(x)$ là một hàm số liên tục trên $\mathbb I$.  Read the rest of this entry »

Tags: , , , , ,

Do cần tìm một phản ví dụ cho một phát biểu của một bạn giáo viên về tính đơn điệu của hàm khả vi, tôi đã tự đặt ra bài toán sau

Bài toán. Tồn tại hay không hàm số $f:\,\mathbb R\to\mathbb R$ có đạo hàm trên $\mathbb R$, thỏa mãn\[\left\{ {f’\left( x \right):\:x \in \mathbb R \setminus \mathbb Q} \right\} = \left\{ 0 \right\},\;\;\,\left\{ {f’\left( x \right):\:x \in \mathbb Q} \right\} \subset {\left(0;\,+\infty\right) }?\] Read the rest of this entry »

Tags: , , ,

Chúng ta quan tâm đến khẳng định sau.

Mệnh đề 1. Cho $\mathbb I$ là một gian $\mathbb R$, hàm $f(x)$ liên tục và có đạo hàm trên $\mathbb I$. Giả sử với mỗi số thực $x\in\mathbb I$, ta đều có $f'(x)\ge 0$ và tồn tại một dãy số chứa tất cả các nghiệm của phương trình $f'(x)=0$. Khi đó, $f(x)$ là hàm đồng biến trên $\mathbb R$. Read the rest of this entry »

Tags: , , , ,

Cho $f(x)$ và $g(x)$ là hai đa thức hệ số thực, chúng ta quan tâm đến vấn đề là khi nào hàm số $h:\,\mathbb R\to\mathbb R$ với quy tắc tương ứng $h(x)=f(g(x))$ sẽ là một hàm đơn điệu trên $\mathbb R$. Rõ ràng, khi $f(x)$ hoặc $g(x)$ là hàm hằng thì $h(x)$ cũng là hàm hằng, do đó ta chỉ quan tâm đền tình huống $\deg f,\,\deg g>0$.

Do $\deg h=\deg f.\deg g$, và nếu $\deg h$ là một số nguyên dương chẵn thì \[\mathop {\lim }\limits_{x \to + \infty } h\left( x \right)\mathop {\lim }\limits_{x \to – \infty } h\left( x \right) = + \infty .\]Từ đây thấy rõ ràng là khi một trong hai đa thức $f(x)$ hoặc $g(x)$ có bậc chẵn, thì $h(x)$ không thể là hàm đơn điệu trên $\mathbb R$. Cũng để ý rằng, nếu $f(g(x))$ là nghịch biến, thì $-f(g(x))$ là hàm đồng biến, thêm nữa là nếu $f(g(x))$ là hàm đồng biến thì sau việc lấy giới hạn ra vô cực, ta thấy là hệ số ứng với bậc cao nhất của nó phải cùng dấu, mà hệ số này lại cùng dấu với tích của hai hệ số ứng với bậc cao nhất của $f(x)$ và $g(x)$ (do $\deg f,\,\deg g$ đều lẻ). Vì lẽ đó, ta chỉ cần quan tâm đến câu hỏi sau Read the rest of this entry »

Tags: , ,

Bài toán. Tìm tất cả các hàm $f:\,\mathbb R^+\to\mathbb R$ thỏa mãn \[f\left( x \right) – f\left( y \right) = \left( {x – y} \right)f’\left( {\sqrt {xy} } \right),\quad\forall\,x,\,y\in\mathbb R^+.\] Read the rest of this entry »

Tags: , ,

Bổ đề sau tuy đơn giản, nhưng có ý nghĩa lớn trong việc nâng bậc đồng dư. Nó là mấu chốt cho việc chứng minh hệ thống bổ đề LTE.

Bổ Đề. Cho $P(x) \in\mathbb Z [x]$, $p$ là số nguyên tố và $x \equiv a\pmod p$, khi đó
\[P(x) \equiv P(a) + (x – a)P'(a)\pmod{p^2}.\]

Chứng minh. Do tính đóng của các phép toán số học với quan hệ đồng dư, nên thực chất bổ đề này chỉ cần chứng minh với trường hợp $P(x)=x^n$. Lúc đó, chỉ cần viết ra hằng đẳng thức sau là thấy ngay Read the rest of this entry »

Tags: , , , ,

 

 Với các hàm số một biến số, chắc không cần xúi bẩy, bạn đọc cũng hiểu là kỹ năng chủ đạo để xử lý đó là tuân thủ nghiêm cẩn các khâu bước của quá trình khảo sát hàm. Tuy nhiên ở dưới đây, trong nhiều bài toán, tôi giấu nhẹm đi con dao đạo hàm. Việc tôi làm, thật ra chả có gì huyền bí, cao siêu cả. Đơn giản là, nếu muốn chứng minh $f\left( x \right)\ge 0$, hoặc là đi tìm cực trị một hàm $f\left( x \right)$. Thì ở trên giấy nháp, bằng cách này hay cách khác (có thể dùng đạo hàm), nếu tôi bắt được nới xảy đến dấu bằng (hoặc nơi đạt cực trị). Tôi chỉ việc kiểm soát cái gia số, qua việc viết $f\left( x \right)=f\left( c \right)+{{\Delta }_{f\left( x \right)}}$, với $c$ là điểm đã dự đoán. Công việc còn lại, đó là  xét dấu của ${{\Delta }_{f\left( x \right)}}=f\left( x \right)-f\left( c \right)$theo yêu cầu của đề toán. Read the rest of this entry »

Tags: , , , , , ,

 

Lời nói đầu: Bài giảng này, lại là một câu chuyện hết sức tào lao nữa của tôi, về 1 khái niệm khá là cao siu-trìu tượng trong Toán Học sơ cấp. Một câu chuyện tào lao, mà lại nói về một điều nghiêm túc và quan trọng, thật khó mà kể lể! Vì thế, mong bạn đọc, khi đọc nó (bài giảng này), hãy dành cho nó một sự lương thiện và hồn nhiên cần thiết. Bạn hãy ý thức là, tôi viết nên nó chỉ là trình bày và chia sẻ chút nhận thức cá nhân của mình. Read the rest of this entry »

Tags: , , , , , ,

Bài toán. Cho các số $p,\,q>0$ thỏa mãn $p+q=1$, tìm các hàm $f:\,\mathbb R\to\mathbb R$ thỏa mãn$$\frac{f(x)-f(y)}{x-y}=f^{\prime}(p x+q y), \quad \forall x \neq y.$$ Read the rest of this entry »

Tags: , ,