Đa Thức Hệ Số Nguyên

You are currently browsing articles tagged Đa Thức Hệ Số Nguyên.

Trước tiên ta có khẳng định sau

Định lý 13.1.Với $g(x)$ và $h(x)$ là hai đa thức với các hệ số nguyên, trong đó:
\[\begin{align*}
g(x)=&a_lx^l+\ldots+a_0,\,\quad\quad a_l\ne 0\\
h(x)=&b_mx^m+\ldots+b_0,\,\quad\; b_m\ne 0
\end{align*}\]
Giả sử rằng $g(x)h(x)=c_{l+m}x^{l+m}+\ldots+c_0$, khi đó \[\gcd\left( a_1,\,a_2,\,\ldots,\,a_0\right).\gcd\left( b_1,\,b_2,\,\ldots,\,b_0\right) =\gcd\left( c_{l+m},\,c_{l+m-1},\,\ldots,\,c_0\right). \]

Chứng minh. Ta có thể coi $\gcd\left( a_1,\,a_2,\,\ldots,\,a_0\right)=\gcd\left( b_1,\,b_2,\,\ldots,\,b_0\right)=1$. Giả sử $p$ là một ước nguyên tố của $\gcd\left( c_{l+m},\,c_{l+m-1},\,\ldots,\,c_0\right)$ và Read the rest of this entry »

Tags: , , , , , , ,

Chúng ta quan tâm đến khái niệm sau.

Định nghĩa. Một đa thức $f(x)$ với biến $x$ được gọi là Đa thức giá trị nguyên khi và chỉ khi nó nhận giá trị nguyên khi $x$ là số nguyên.

Ví dụ. Các đa thức có hệ số nguyên là những đa thức giá trị nguyên. Tuy nhiên có những đa thức có hệ số không là số nguyên nhưng vẫn là đa thức giá trị nguyên, chẳng hạn đa thức sau đây \[\dbinom{x}{r} = \dfrac{{x(x – 1) \ldots (x – r + 1)}}{{r!}}.\]Ta kí hiệu $f(x+1)-f(x)=\Delta f(x)$ và có khẳng định sau. Read the rest of this entry »

Tags: , , , , , ,

Dưới đây là lời giải cho một bài toán rất khó về tính chất số học của đa thức.

Bài toán. Tìm tất cả các đa thức $P(x)\in\mathbb Z[x]$ và $m\in\mathbb Z^+$, sao cho $m+2^nP(n)$ là số chính phương với mọi số nguyên dương $n$.

Lời giải.  Giả sử $P(x)$ và $m$ là đa thức và số nguyên dương thỏa mãn, ta có 2 nhận xét sau:

Nhận xét 1. Nếu $p$ là ước nguyên tố lẻ của $m+2^nP(n)$ thì $p\mid P'(n).$

Chứng minh. Ta có $v_p\left(m+2^nP(n)\right)\ge 2$, theo Fermat bé thì\[m + {2^n}P\left( n \right) \equiv m + {2^{n + p\left( {p – 1} \right)}}P\left( {n + p\left( {p – 1} \right)} \right)\pmod{p}.\]Vì thế ta lại có $v_p\left(m+2^{n+p(p-1)}P\left(n+p(p-1)\right)\right)\ge 2$, theo bổ đề tiếp tuyến và định lý Euler ta có Read the rest of this entry »

Tags: , , , , , ,

Bài toán khá thú vị sau đây nói về đồng dư của tổng các luỹ thừa theo mod nguyên tố, nội dung như sau.

Bài toán. Cho $p$ là số nguyên lẻ và số nguyên dương $k<p-1$, chứng minh rằng\[1^{k}+2^{k}+…+(p-1)^{k}\equiv 0\pmod p.\]

Bài toán này, có hai lời giải như dưới đây. Lời giải đầu sử dụng đến định lý Viettè với đa thức trên $\mathbb Z_p$, còn lời giải thứ hai sử dụng đến căn nguyên thuỷ. Cụ thể là thế này. Read the rest of this entry »

Tags: , , , , , ,