Bài Tập Vặt

You are currently browsing articles tagged Bài Tập Vặt.

Bài toán T3/493 trên THTT (tạp chí Toán Học và Tuổi Trẻ), có nội dung như sau.

Bài toán. Tìm các số nguyên dương $m$ và $n$ thỏa mãn\[2^m=n^3-5n+10.\]

Bài toán này, có lời giải đăng trên báo THTT số 497. Tuy nhiên rất tiếc là lời giải bị sai bét, do mắc một sai lầm hết sức ngây thơ, đó là với $a,\,m$ là các số nguyên dương chẵn $b,\,n$ là các số nguyên dương lẻ thỏa mãn $ab=mn$ thì kéo theo $a=m$ và $b=n$.

Sau đây, là một lời giải đúng cho bài toán đó. Read the rest of this entry »

Tags:

Bài toán. Cho các số thực $a,\,b,\,c$ thỏa mãn $0<a<b<c$ và\[\left\{ \begin{array}{l}
a + b + c &= 6,\\ab + bc + ca &= 9.\end{array} \right.\]Chứng minh rằng $a<1$ và $c<4$.

Lời giải. Ta có\[\begin{array}{l}
\left( {1 – a} \right)\left( {1 – b} \right)\left( {1 – c} \right) = 1 – \left( {a + b + c} \right) + \left( {ab + bc + ca} \right) – abc = 4 – abc.\\
\left( {4 – a} \right)\left( {4 – b} \right)\left( {4 – c} \right) = 64 – 16\left( {a + b + c} \right) + 4\left( {ab + bc + ca} \right) – abc = 4 – abc.
\end{array}\]

  1. Nếu $a\ge 1$ thì do $1\le a<b<c$, nên $(1-a)(1-b)(1-c)=4-abc\le 0$. Tuy nhiên khi $a\ge 1$ thì $b>1$ từ đó $c=6-a-b<4$, nên ta có điều vô lý là\[(4-a)(4-b)(4-c)=4-abc> 0.\]
  2. Áp dụng bất đẳng thức AM-GM với chú ý là $a<b$, ta có\[\begin{array}{l}
    9 &= ab + \left( {a + b} \right)c\\
    &\le \dfrac{{{{\left( {a + b} \right)}^2}}}{4} + \left( {a + b} \right)c\\
    &= \frac{1}{4}{\left( {6 – c} \right)^2} + \left( {6 – c} \right)c\\
    &= 9 + \frac{3}{4}c\left( {4 – c} \right).
    \end{array}\]Từ đó sẽ có $c<4$.

Tags: , ,