Bài viết này tiếp nối phần 1:
Ở phần 1, ta mới nếu ra cơ bản về lý thuyết Galois cũng như tính chất của nhóm Galois. Giờ ta sẽ đi vào cụ thể tính toán nhóm Galois của đa thức hữu tỉ bất khả quy.
Trong bài viết này, $F$ là một trường.
III. Điều kiện để đa thức tách được và nhóm $G_f\subset A_n$
Ta thấy rằng phần lớn lý thuyết Galois làm việc trên đa thức tách được. Một câu hỏi tự nhiên đặt ra là làm thế nào để biết một đa thức là tách được? Theo những lý thuyết ta ở phần 1 thì điều này buộc ta phải biết tất cả các nghiệm của $f$, việc này không hề đơn giản.
Cách thứ nhất là khảo sát $f$ và $f’$, ở đây hiểu $f’$ là đạo hàm hình thức của $f$. Một kết quả kinh điển cho biết rằng nếu $f$ có nghiệm bội $\alpha$ thì $\alpha$ cũng là nghiệm của $f’$. Ý tưởng đó được mở rộng thành kết quả sau đây:
Định lí: Cho $f\in F[x]$, $f$ bất khả quy. Khi đó $f$ tách được khi và chỉ khi $gcd(f,f’)=1$.
Phản Hồi