Bài toán. Tìm tất cả các hàm $f:\,\mathbb R^+\to\mathbb R$ thỏa mãn \[f\left( x \right) – f\left( y \right) = \left( {x – y} \right)f’\left( {\sqrt {xy} } \right),\quad\forall\,x,\,y\in\mathbb R^+.\] Read the rest of this entry »

Tags: , ,

Bài toán.  Một cặp số nguyên dương $(a,\,b)$ gọi là “cặp số tốt” nếu như $a$ và $b$ có cùng tập ước nguyên tố. Chứng minh rằng tồn tại vô số các “cặp số tốt” $(m,\,n)$ với $m$ và $n$ là các số nguyên dương phân biệt sao cho $(m+1,\,n+1)$ cũng là “cặp số tốt”.

Lời giải. Với số nguyên dương $k$ lớn hơn $1$ bất kỳ, ta chọn $m=2^{k+1}\left(2^{k-1}-1\right)$ và $n=2\left(2^{k-1}-1\right)$. Read the rest of this entry »

Tags:

Bài viết này, có nội dung là một số bài toán tôi sử dụng để dạy các học sinh thi VMO năm học 2018-2019. Các bài toán này, một số được tôi sáng tác mới hoặc mở rộng và làm mạnh từ các bài đã cũ.

P1. Một số nguyên dương $a$ gọi “đẹp” nếu tồn tại số nguyên dương $b$ thỏa mãn $a^5+b^7$ chia hết cho $2018$. Tìm số các số đẹp không lớn hơn 2018. Read the rest of this entry »

Tags: , , , , ,

Bài toán. Tìm $y\in\mathbb R$ thỏa$$y^3+4y^2+3y-1=0.$$

Lời giải. Đặt $y=\frac{x-4}{3}$, ta có \[\begin{align*}
{y^3} + 4{y^2} + 3y – 1 &= {\left( { \frac{x-4}{3}} \right)^3} + 4{\left( { \frac{x-4}{3}} \right)^2} + 3\left( { \frac{x-4}{3}} \right) – 1\\
&= \frac{1}{{27}}\left( {{x^3} – 21x – 7} \right). Read the rest of this entry »

Bài toán T3/493 trên THTT (tạp chí Toán Học và Tuổi Trẻ), có nội dung như sau.

Bài toán. Tìm các số nguyên dương $m$ và $n$ thỏa mãn\[2^m=n^3-5n+10.\]

Bài toán này, có lời giải đăng trên báo THTT số 497. Tuy nhiên rất tiếc là lời giải bị sai bét, do mắc một sai lầm hết sức ngây thơ, đó là với $a,\,m$ là các số nguyên dương chẵn $b,\,n$ là các số nguyên dương lẻ thỏa mãn $ab=mn$ thì kéo theo $a=m$ và $b=n$.

Sau đây, là một lời giải đúng cho bài toán đó. Read the rest of this entry »

Tags:

Bài 1:   Cho các số thực dương $x,y,z$. Chứng minh rằng
$$\dfrac{x}{2x+y+z}+\dfrac{y}{2y+z+x}+\dfrac{z}{2z+x+y}\le \dfrac{3}{4}.$$

Bài giải

Áp dụng Cauchy Schwarz, ta có
$$ \dfrac{1}{2x+y+z} \le \dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z} \right),$$
hay
$$\dfrac{x}{2x+y+z}\le \dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right).$$
Tương tự như trên thì Read the rest of this entry »

 Đẳng thức 1. Với $x,y,z$ sao cho $(x+y)(y+z)(z+x)\neq 0$, thì ta có
$$\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}=3,$$
hay
$$x\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)+y\left(\dfrac{1}{y+z}+\dfrac{1}{y+x} \right)+z\left(\dfrac{1}{z+x}+\dfrac{1}{z+y} \right)=3.$$
Đẳng thức 2. Với $x,y,z,k$  sao cho $(x+ky)(y+kz)(z+kx)\neq 0$, thì ta có
$$\dfrac{x+ky}{x+ky}+\dfrac{y+kz}{y+kz}+\dfrac{z+kx}{z+kx}=3,$$ Read the rest of this entry »

Cho tam giác $ABC$ có tâm ngoại tiếp $O.$ $O^*$ là điểm liên hợp đẳng cự của $O.$ $A’B’C’$ là tam giác ceva của $O.$ $A”B”C”$ là tam giác antipedal của $O$ đối với tam giác $A’B’C’.$ Chứng minh rằng tâm ngoại tiếp của tam giác $A”B”C”$ nằm trên đường thẳng $OO^*.$

 Các hằng đẳng thức thường gặp: 

$$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)$$
$$(a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)$$
$$(a+b+c)(ab+bc+ca)=(a+b)(b+c)(c+a)+abc$$ Read the rest of this entry »

Tags: , , ,

Bài toán 6 VNTST 2018. Cho tam giác $ABC$ nhọn nội tiếp $(O)$ và $(J)$ là đường tròn bàng tiếp góc $A$ của tam giác. Gọi $D,E,F$ lần lượt là tiếp điểm của $(J)$ trên $BC,CA,AB.$

a) Gọi $L$ là trung điểm $BC$. Đường tròn đường kính $LJ$ cắt $DE,DF$ tại $K,H.$ Chứng minh rằng $(BDK)$ và $(CDH)$ cắt nhau trên $(J).$

b) Giả sử $EF$ cắt $BC$ tại $G$ và $GJ$ cắt $AB,AC$ lần lượt tại $M,N.$ Gọi $P,Q$ là các điểm trên $JB,JC$ sao cho $\angle PAB=\angle QAC=90^\circ .$ Gọi $T$ là giao điểm của $PM,QN$ và $S$ là điểm chính giữa cung lớn $BC$ của $(O).$ Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC.$ Chứng minh rằng $SI$ cắt $AT$ tại một điểm thuộc $(O).$

Một số phát triển. Read the rest of this entry »

Tags: ,

« Older entries § Newer entries »