Tính chuẩn tắc trong phần lớn các tài liệu, chỉ được định nghĩa liên quan đến các nhóm con của một nhóm cho trước. Điều này vô tình gò bó một tính chất độc lập, vậy nên bài viết này sẽ mở rộng tính chuẩn tắc thông thường. Read the rest of this entry »

Câu hỏi: Khi nào 2 nhóm $(A,B)$ thỏa mãn tồn tại $f$ để $(A,B)=(Kerf,Imf)$.

 Để trả lời câu hỏi này,chúng ta xây dựng nên nhóm con chuẩn tắc,nhóm thương ,cũng như chỉ ra sự quan hệ giữa đồng cấu với hạt nhân và ảnh của một đồng cấu, qua đó là góc nhìn quan hệ nhóm con chuẩn tắc dưới dạng đồng cấu nhóm
I.Mở đầu
-Khái niệm về nhóm,nhóm con và khái niệm cơ bản về đồng cấu,các loại đồng cấu trong [1]
-Cho nhóm $G$,kí hiệu $e_G$ là phần tử đơn vị của $G$
-Cho $f:G \rightarrow H$ là một đồng cấu: Read the rest of this entry »

Bài toán về đa thức sau đây, có thể sử dụng một skill kinh điển của Số Học, đó là Vieta jumping

Bài toán. Tìm các cặp đa thức có hệ số phức $P(x)$ và $Q(x)$ thỏa mãn điều kiện: $P^2(x)+1$ chia hết cho $Q(x)$ và $Q^2(x)+1$ chia hết cho $P(x)$. Read the rest of this entry »

Bài toán. Tìm tất cả các hàm $f:\,\mathbb R^+\to\mathbb R$ thỏa mãn \[f\left( x \right) – f\left( y \right) = \left( {x – y} \right)f’\left( {\sqrt {xy} } \right),\quad\forall\,x,\,y\in\mathbb R^+.\] Read the rest of this entry »

Tags: , ,

Bài toán.  Một cặp số nguyên dương $(a,\,b)$ gọi là “cặp số tốt” nếu như $a$ và $b$ có cùng tập ước nguyên tố. Chứng minh rằng tồn tại vô số các “cặp số tốt” $(m,\,n)$ với $m$ và $n$ là các số nguyên dương phân biệt sao cho $(m+1,\,n+1)$ cũng là “cặp số tốt”.

Lời giải. Với số nguyên dương $k$ lớn hơn $1$ bất kỳ, ta chọn $m=2^{k+1}\left(2^{k-1}-1\right)$ và $n=2\left(2^{k-1}-1\right)$. Read the rest of this entry »

Tags:

Bài viết này, có nội dung là một số bài toán tôi sử dụng để dạy các học sinh thi VMO năm học 2018-2019. Các bài toán này, một số được tôi sáng tác mới hoặc mở rộng và làm mạnh từ các bài đã cũ.

P1. Một số nguyên dương $a$ gọi “đẹp” nếu tồn tại số nguyên dương $b$ thỏa mãn $a^5+b^7$ chia hết cho $2018$. Tìm số các số đẹp không lớn hơn 2018. Read the rest of this entry »

Tags: , , , , ,

Bài toán. Tìm $y\in\mathbb R$ thỏa$$y^3+4y^2+3y-1=0.$$

Lời giải. Đặt $y=\frac{x-4}{3}$, ta có \[\begin{align*}
{y^3} + 4{y^2} + 3y – 1 &= {\left( { \frac{x-4}{3}} \right)^3} + 4{\left( { \frac{x-4}{3}} \right)^2} + 3\left( { \frac{x-4}{3}} \right) – 1\\
&= \frac{1}{{27}}\left( {{x^3} – 21x – 7} \right). Read the rest of this entry »

Bài toán T3/493 trên THTT (tạp chí Toán Học và Tuổi Trẻ), có nội dung như sau.

Bài toán. Tìm các số nguyên dương $m$ và $n$ thỏa mãn\[2^m=n^3-5n+10.\]

Bài toán này, có lời giải đăng trên báo THTT số 497. Tuy nhiên rất tiếc là lời giải bị sai bét, do mắc một sai lầm hết sức ngây thơ, đó là với $a,\,m$ là các số nguyên dương chẵn $b,\,n$ là các số nguyên dương lẻ thỏa mãn $ab=mn$ thì kéo theo $a=m$ và $b=n$.

Sau đây, là một lời giải đúng cho bài toán đó. Read the rest of this entry »

Tags:

Bài 1:   Cho các số thực dương $x,y,z$. Chứng minh rằng
$$\dfrac{x}{2x+y+z}+\dfrac{y}{2y+z+x}+\dfrac{z}{2z+x+y}\le \dfrac{3}{4}.$$

Bài giải

Áp dụng Cauchy Schwarz, ta có
$$ \dfrac{1}{2x+y+z} \le \dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z} \right),$$
hay
$$\dfrac{x}{2x+y+z}\le \dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right).$$
Tương tự như trên thì Read the rest of this entry »

 Đẳng thức 1. Với $x,y,z$ sao cho $(x+y)(y+z)(z+x)\neq 0$, thì ta có
$$\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}=3,$$
hay
$$x\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)+y\left(\dfrac{1}{y+z}+\dfrac{1}{y+x} \right)+z\left(\dfrac{1}{z+x}+\dfrac{1}{z+y} \right)=3.$$
Đẳng thức 2. Với $x,y,z,k$  sao cho $(x+ky)(y+kz)(z+kx)\neq 0$, thì ta có
$$\dfrac{x+ky}{x+ky}+\dfrac{y+kz}{y+kz}+\dfrac{z+kx}{z+kx}=3,$$ Read the rest of this entry »

« Older entries § Newer entries »