Giải Tích

You are currently browsing the archive for the Giải Tích category.

Đây là câu hỏi của một bạn giáo viên trên group của các giáo viên . Tôi thấy nó là một câu hỏi giàu ý nghĩa, do đó tôi viết bài này. Trước tiên, xin nhắc lại là vấn đề được bạn giáo viên trong group đó đặt ra như sau.

Bài toán.  Cho $a$ là một số thực dương còn $\alpha$ là một số vô tỷ, giả sử có hai dãy số hữu tỷ cùng hội tụ về $\alpha$ là $\left(r_n\right)_{n\in\mathbb N}$ và  $\left(t_n\right)_{n\in\mathbb N}$, xét hai dãy cho bởi sự gán trị\[{u_n} = {a^{{r_n}}},\quad {v_n} = {a^{{t_n}}},\;\forall {\mkern 1mu} n \in \mathbb N.\]Chứng minh rằng, $\left(u_n\right)_{n\in\mathbb N}$ và  $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến một giới hạn.

Chú ý rằng, nếu bài toán vừa đưa ra được giải quyết, thì ta sẽ có được định nghĩa tốt cho $a^{\alpha}$. Theo đó thì, giá trị của $a^{\alpha}$ chính là kết quả giới hạn duy nhất mà các dãy $\left(u_n\right)_{n\in\mathbb N}$ và  $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến. Giờ, ta sẽ xử lý bài toán kia. Read the rest of this entry »

Tags: , ,

Tình cờ đọc trên facebook thấy có một bạn hỏi một bài toán Giải Tích cơ bản có liên quan đến hàm lồi, như sau đây

Bài toán. Cho $f:\,\mathbb R\to\mathbb R$ là một hàm lồi không giảm. Chứng minh rằng, tồn tại giới hạn $\mathop {\lim }\limits_{x \to – \infty } \frac{{f\left( x \right)}}{x}$ và kết quả giới hạn đó là một số thực không âm. Read the rest of this entry »

Tags: , , ,

“How to Solve It”  là tên một cuốn sách nổi tiếng của G.Pólya, một nhà sư phạm Toán Học nổi tiếng. Tôi mạo phép mượn nó làm tiêu đề cho chuỗi bài viết này, một chuỗi bài tôi muốn viết từ lâu. Nguyên nhân khoan hoãn và trù trừ cho dự định viết chuỗi bài này, vì tôi cảm thấy tự ti bởi năng lực bản thân, sợ viết ra rồi bị đánh giá là lên gân etc vv.. Tuy nhiên, do bản chất công việc phải làm hằng ngày, nên tôi lại hiểu rõ trách nhiệm mình cần làm. Thôi thì cứ viết lại những gì mình cảm nhận, hy vọng nó có ích với một số đối tượng nhất định. Read the rest of this entry »

Tags: , , , ,

Cá nhân tôi nghĩ rằng, khởi đầu của Số Học có lẽ là từ sự nhận thức của con người về tập hợp số tự nhiên $\mathbb N$, về bản năng thì điều này rất.. tự nhiên do nhu cầu đếm. Tuy nhiên, đưa ra một định nghĩa đàng hoàng về $\mathbb N$ là một điều khó khăn. Ở đây, chúng ta sẽ xây dựng $\mathbb N$ dựa trên hệ tiên đề Peano, như sau đây.

Hệ tiên đề Peano cho tập số tự nhiên.  Chúng ta thừa nhận sự tồn tại của tập hợp các số tự nhiên $\mathbb N$, mà trên đó xác định một quan hệ gọi là “liền sau”, thỏa mãn cả bốn tiên đề dưới đây. Read the rest of this entry »

Tags: , , , , , ,

Trong đề thi chọn đội VMO của Khánh Hòa, có bài toán sau đây

Bài toán 1. Chứng minh rằng với mỗi số nguyên dương $n$, đều tồn tại duy nhất một cặp số nguyên dương $(a,\,b)$ sao cho \[n = a + \frac{{\left( {a + b – 1} \right)\left( {a + b – 2} \right)}}{2}.\]

Bài toán này, nhìn bề ngoài rõ ràng là một bài Số Học, và ta cũng có những lời giải thuần Số Học cho nó. Read the rest of this entry »

Tags: , , , ,

Cho $\mathbb I$ là một gian trên $\mathbb R$, một hàm $f:\,\mathbb I\to\mathbb R$ gọi là lồi trên $\mathbb I$ nếu và chỉ nếu với các số $a,\,b\in\mathbb I$ bất kỳ và $k\in (0;\,1)$ tùy ý, ta luôn có được bất đẳng thức sau\[f\left( {ka + \left( {1 – k} \right)b} \right) \le kf\left( a \right) + \left( {1 – k} \right)f\left( b \right).\] Bài viết này, có mục đích là chứng minh định lý sau đây

Định lý 1. Cho $\mathbb I$ là một khoảng mở của đường thẳng thực và hàm số $f:\,\mathbb I\to\mathbb R$ lồi trên $\mathbb I$, khi đó $f(x)$ là một hàm số liên tục trên $\mathbb I$.  Read the rest of this entry »

Tags: , , , , ,

Tập số thực có sự sắp tự hoàn chỉnh, nếu lấy mỗi số thực $r$ ra và đem so sánh với số $0$, thì có đúng ba trạng thái hệt như giới tính con người, đó là

  1. Không có dấu (buê-đê) nếu $r=0$.
  2. Dấu dương (man-lì) nếu $r>0$.
  3. Dấu âm (đàn bà) nếu $r<0$.

Với một đại lượng biến thiên $E$, khi đó có thể là $E$ bất biến dấu, không đổi dấu hoặc đổi dấu lung tung.. Nếu chúng ta lấy ra hai biểu thức chứa biến $x,\,y,\,..$ là $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$, ta sẽ nói $A$ và $A’$ tương đương về dấu trên miền $D$ nếu cứ với mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì trạng thái dấu của $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ là như nhau. Cụ thể là, tại mỗi bộ $(x,\,y,\,..)\in D$ bất kỳ thì $A(x,\,y,\,..)$ và $A'(x,\,y,\,..)$ hoặc cùng bằng $0$ hoặc cùng dương, hoặc cùng âm. Ở phạm vi vài viết này, nếu $A$ và $A’$ tương đương về dấu trên $D$, tôi sẽ sử dụng ký hiệu\[A\mathop \sim\limits_D A’.\] Read the rest of this entry »

Tags: , ,

Ở IMO 2006, có bài đa thức như này

Bài toán N4 IMO 2006.  Cho $P(x)$ là một đa thức hệ số nguyên có bậc $n$ với $n>1$, với mỗi số nguyên dương $k$ ta ký hiệu $
P_k(x)=\underbrace{P(P(\ldots(P(x) \ldots))}_{k\; \text{lần}\;P}
$. Chứng minh rằng với mỗi số nguyên dương $k$ lớn hơn $1$, luôn có không quá $n$ nghiệm nguyên phân biệt của phương trình $P_k(x)=x$.

Hôm nay, đem dạy bài này cho một đội để thị phạm cách chui vào bụi rậm rồi chui ra.. Cuối cùng xuất được cái lời giải sau 😀 Read the rest of this entry »

Tags: , ,

Do cần tìm một phản ví dụ cho một phát biểu của một bạn giáo viên về tính đơn điệu của hàm khả vi, tôi đã tự đặt ra bài toán sau

Bài toán. Tồn tại hay không hàm số $f:\,\mathbb R\to\mathbb R$ có đạo hàm trên $\mathbb R$, thỏa mãn\[\left\{ {f’\left( x \right):\:x \in \mathbb R \setminus \mathbb Q} \right\} = \left\{ 0 \right\},\;\;\,\left\{ {f’\left( x \right):\:x \in \mathbb Q} \right\} \subset {\left(0;\,+\infty\right) }?\] Read the rest of this entry »

Tags: , , ,

Chúng ta quan tâm đến khẳng định sau.

Mệnh đề 1. Cho $\mathbb I$ là một gian $\mathbb R$, hàm $f(x)$ liên tục và có đạo hàm trên $\mathbb I$. Giả sử với mỗi số thực $x\in\mathbb I$, ta đều có $f'(x)\ge 0$ và tồn tại một dãy số chứa tất cả các nghiệm của phương trình $f'(x)=0$. Khi đó, $f(x)$ là hàm đồng biến trên $\mathbb R$. Read the rest of this entry »

Tags: , , , ,

« Older entries