Giải Tích

You are currently browsing the archive for the Giải Tích category.

Bài toán. Cho đa thức $f(x)=x^2-\alpha x+1$.

  1.  Với $\alpha=\dfrac{\sqrt{15}}{2}$, hãy viết $f(x)$ thành thương của hai đa thức với các hệ số không âm.
  2.  Tìm tất cả các giá trị của $\alpha$ để viết được $f(x)$ thành thương của hai đa thức với các hệ số không âm.

Read the rest of this entry »

Tags: , ,

Cho hàm số $f:\;\mathbb R\to\mathbb R^+$ liên tục và thỏa mãn\[\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0.\]

  1. Chứng minh rằng tồn tại giá trị lớn nhất của $f(x)$ trên $\mathbb R$.
  2. Chứng minh rằng tồn tại hai dãy số $\left(x_n\right)$ và $\left(x_n\right)$ cùng hội tụ đến chung một giới hạn, $x_n<y_n$ với mọi số nguyên dương $n$ và\[ f\left( {{x_n}} \right) = f\left( {{y_n}} \right),\quad \;\;\;\forall {\mkern 1mu} n\in\mathbb N^*.\]

Read the rest of this entry »

Tags: , ,

Bài toán Dãy số nguyên $\left( {{x_n}} \right)$, thỏa $0\le x_0<x_1\le 100$ và\[{x_{n + 2}} = 7{x_{n+1}} – {x_n} + 280,\;\;\;{\kern 1pt} \forall {\mkern 1mu} n \in \mathbb N.\]

  1. Với $x_0=2,\,x_1=3$, chứng minh rằng tổng các ước số dương của $x_{n}x_{n+1}+x_{n+1}x_{n+2}+x_{n+2}x_{n+3}+2018$ là bội số của $24$.
  2. Tìm các cặp $\left(x_0,\,x_1\right)$ sao cho $x_nx_{n+1}+2019$ là số chính phương với vô số số tự nhiên $n$.

Read the rest of this entry »

Tags: , , ,

Bài toán về đa thức sau đây, có thể sử dụng một skill kinh điển của Số Học, đó là Vieta jumping

Bài toán. Tìm các cặp đa thức có hệ số phức $P(x)$ và $Q(x)$ thỏa mãn điều kiện: $P^2(x)+1$ chia hết cho $Q(x)$ và $Q^2(x)+1$ chia hết cho $P(x)$. Read the rest of this entry »

Bài toán. Tìm tất cả các hàm $f:\,\mathbb R^+\to\mathbb R$ thỏa mãn \[f\left( x \right) – f\left( y \right) = \left( {x – y} \right)f’\left( {\sqrt {xy} } \right),\quad\forall\,x,\,y\in\mathbb R^+.\] Read the rest of this entry »

Tags: , ,

Bài viết này, có nội dung là một số bài toán tôi sử dụng để dạy các học sinh thi VMO năm học 2018-2019. Các bài toán này, một số được tôi sáng tác mới hoặc mở rộng và làm mạnh từ các bài đã cũ.

P1. Một số nguyên dương $a$ gọi “đẹp” nếu tồn tại số nguyên dương $b$ thỏa mãn $a^5+b^7$ chia hết cho $2018$. Tìm số các số đẹp không lớn hơn 2018. Read the rest of this entry »

Tags: , , , , ,

Đây là bài toán 29 trong mã đề 123 mà bộ Dục ra cho học sinh, trong kỳ thi THPT năm 2018. Bài toán này thoạt nhìn chả có gì ghê gớm, bản chất vốn chỉ là một bài tính tích phân đơn giản với nội dung như sau.

Bài toán.  Cho $a,\,b,\,c$ là các số hữu tỷ thỏa mãn\[\int\limits_{16}^{55} {\frac{{dx}}{{x\sqrt {x + 9} }} = a\ln 2 + b\ln 5 + c\ln 11.} \]Mệnh đề nào dưới đây đúng?\[A.\;a+b=-3c,\qquad B.\;a-b=-c,\qquad C.\;a+b=c,\qquad D.\;a+b=3c.\]

Để giải bài toán này, mẹo mực bấm máy thì mình không quan tâm. Nếu phải tính cái tích phân kia, thì mình làm như thế này. Read the rest of this entry »

Tags: , , , ,

Bài giảng này viết về khái niệm tập hợp, một khái niệm nền móng và cơ bản của Toán Học hiện đại. Khái niệm tập hợp giữ vai trò đặc biệt quan trọng trong Toán Học, không chỉ vì cho đến nay, lý thuyết Tập Hợp đã trở thành một nhánh rộng rãi và phong phú, mà còn vì từ sự xuất hiện từ chừng hai thế kỷ trước, lý thuyết Tập Hợp đã và vẫn đang có những ảnh hưởng sâu sắc đến toàn bộ Toán Học. Ở phạm vi bài viết này, tôi chỉ đưa ra các khái niệm cơ bản thuần túy, cùng các phép toán trên tập cơ bản nhất như giao, hợp, hiệu các tập. Một mục đích nữa của bài giảng, là cung cấp nền tảng khởi đầu cho môn Tổ Hợp. Vì thế, nên trong bài giảng có bàn đến các quy tắc xác định lực lượng tập hợp như nguyên lý cộng, bù trừ và nguyên lý nhân. Read the rest of this entry »

Tags: , , , , , , ,

Cuộc sống, được chúng ta nhận thức qua sự hiện hữu và vận động của các thành tố trong nó. Khi tồn tại để vận động và phát triển, các đối tượng tương tác với nhau theo những quy luật được xác định, để rồi có những ảnh hưởng đến giá trị về lượng và chất tương ứng. Chính sự tương tác ảnh hưởng qua lại giữa các đối tượng của cuộc sống, giúp chúng ta nhận thức được bản chất các đối tượng đó theo nhiều góc nhìn. Read the rest of this entry »

Tags: , , , , , , , , , , ,

Bài 1. Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} – \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]

  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]link: http://mathscope.org/showthread.php?t=51561

Read the rest of this entry »

Tags: , , , , , , , , ,

« Older entries