Articles by Nguyễn Minh Đức

You are currently browsing Nguyễn Minh Đức’s articles.

Ta đã tiếp cận nhiều bài toán cấp 2, được cho ở dạng chứng minh một biểu thức đối xứng nào đó là số hữu tỉ, ví dụ như:

Bài toán 1: Chứng minh rằng: $a^4+b^4$ là số hữu tỉ với $a=1+\sqrt{5}$ và $b=1-\sqrt{5}$

Bài toán 2: Chứng minh rằng: $a^3b+b^4$ không là số hữu tỉ với $a=1+\sqrt{5}$ và $b=1-\sqrt{5}$

Nhận thấy ngay rằng $a,b$ ở trên đều là nghiệm vô tỉ của đa thức hữu tỉ nào đó.
Vậy thì tại sao khi biểu thức của các nghiệm là đối xứng thì nó là hữu tỉ?
Liệu trường hợp biểu thức đó không đối xứng thì có phải nó luôn vô tỉ không? Nếu không thì khi nào nó xảy ra? Read the rest of this entry »

Thông thường khi xét đa thức f $\in \mathbb{R}[x]$, f phân tích duy nhất được thành các đa thức bất khả quy. Câu hỏi được đặt ra khi ta thấy thế $\mathbb{R}$ bởi một trường, vành,… bất kì thì tính chất trên liệu có còn đúng? Xây dựng lí thuyết để trả lời câu hỏi này, ta sẽ nhận được những ứng dụng rất thú vị.
1. Mở đầu:
Bài viết này nghiên cứu đa thức trên cấu trúc tổng quát của $\mathbb{R}$, đó là TRƯỜNG và rộng hơn là VÀNH:
Định nghĩa 1: Tập hợp $K$ được trang bị 2 phép toán + và . thỏa mãn:
♥ $(K,+)$ là nhóm abel
♥ $K$ đóng với phép nhân
♥ Hai phép toán kết hợp, nghĩa là $\forall a,b,c \in K$ thì $a(b+c)=ab+ac$ và $(b+c)a=ba+ca$
Khi đó $K$ gọi là vành.
Thông thường ta kí hiệu 0 là đơn vị của phép “+” và 1 là đơn vị của phép “.” (nếu có)
Khi phép $.$ có đơn vị ta gọi $K$ là vành có đơn vị, khi phép $.$ giao hoán ta gọi $K$ là vành giao hoán. Đặc biệt, khi $(K$\ $\{0\},.)$ là nhóm abel thì $K$ gọi là trường. Read the rest of this entry »

Bài toán: Cho đa giác đều $H$ hữu hạn đỉnh. Ta tô màu các đỉnh đa giác bằng một số màu thỏa mãn các đỉnh cùng màu tạo nên một đa giác đều. Chứng minh rằng tồn tại 2 đa giác đều đơn sắc đồng dạng. Read the rest of this entry »

Tính chuẩn tắc trong phần lớn các tài liệu, chỉ được định nghĩa liên quan đến các nhóm con của một nhóm cho trước. Điều này vô tình gò bó một tính chất độc lập, vậy nên bài viết này sẽ mở rộng tính chuẩn tắc thông thường. Read the rest of this entry »

Câu hỏi: Khi nào 2 nhóm $(A,B)$ thỏa mãn tồn tại $f$ để $(A,B)=(Kerf,Imf)$.

 Để trả lời câu hỏi này,chúng ta xây dựng nên nhóm con chuẩn tắc,nhóm thương ,cũng như chỉ ra sự quan hệ giữa đồng cấu với hạt nhân và ảnh của một đồng cấu, qua đó là góc nhìn quan hệ nhóm con chuẩn tắc dưới dạng đồng cấu nhóm
I.Mở đầu
-Khái niệm về nhóm,nhóm con và khái niệm cơ bản về đồng cấu,các loại đồng cấu trong [1]
-Cho nhóm $G$,kí hiệu $e_G$ là phần tử đơn vị của $G$
-Cho $f:G \rightarrow H$ là một đồng cấu: Read the rest of this entry »

Newer entries »