Tháng Một 2021

You are currently browsing the monthly archive for Tháng Một 2021.

Một lát cắt $C$ là một tập con thực sự của $\mathbb Q$, thỏa mãn đồng thời các điều kiện

  • Mọi số hữu tỷ nhỏ hơn một phần tử nào đó của $C$, đều thuộc $C$.
  • Trong $C$ không có số lớn nhất.

Cho $a$ là một số hữu tỷ, ta có thể dễ dàng kiểm chứng $C_a$ là một lát cắt trong đó $$C_a=\left\{x\in\mathbb Q:\;x<a\right\}.$$ Những lát cắt kiểu này, gọi là lát cắt xác định số hữu tỷ, ngoài ra ta có thể kiểm tra tập hợp sau đây cũng là một lát cắt $$S=\left\{x\in\mathbb Q:\;x^3<2\right\}.$$ Cũng có thể chứng minh được rằng $S\ne C_a$ với mọi số hữu tỷ $a$, nói khác đi thì cái lát cắt $S$ kia nó không phải là lát cắt xác định số hữu tỷ. Lát cắt kiểu như $S$, tức là các lát cắt khác các lát cắt xác định số hữu tỷ, sẽ được gọi là lát cắt xác định số vô tỷ.

Read the rest of this entry »

Tags: , ,

Có 3 định lí đồng cấu nhóm cơ bản, ở bài viết này chúng ta quan tâm đến việc mở rộng định lí đồng cấu thứ 2, từ đó áp dụng chứng minh bổ đề Zassenhaus. Ngoài ra ta cũng bàn về nhóm con chuẩn tắc và tính giao hoán.

Cho $(G,.)$ là một nhóm. Nhắc lại rằng $H$ là nhóm con chuẩn tắc của $G$ nếu $H$ là nhóm con và $xH=Hx$ với mọi $x\in G$.
Nói cách khác $H$ giao hoán với bất kì phần tử nào của $G$, do đó $H$ giao hoán với bất kì tập con nào của $G$. Từ ý tưởng đó ta có mệnh đề sau:

Read the rest of this entry »

Phần 1 về phân loại nhóm hữu hạn ở http://maths.vn/phan-loai-nhom-huu-han/
Bài viết này chúng ta sẽ bàn về ứng dụng của những lý thuyết ta xây dựng ở phần trước vào chứng minh định lí Sylow cho nhóm giao hoán

Định lí Sylow thứ nhất: Cho $(G,+)$ là nhóm Abel với $|G|=p^r.m$ với $p$ là số nguyên tố,$r\ge 1$ và $(m,p)=1$. Khi đó tồn tại một nhóm con $H$ của $G$ có cấp $p^r$ và ta gọi đó là $p$-nhóm con Sylow của $G$.

Read the rest of this entry »