Tháng Một 2020

You are currently browsing the monthly archive for Tháng Một 2020.

Thông thường khi xét đa thức f $\in \mathbb{R}[x]$, f phân tích duy nhất được thành các đa thức bất khả quy. Câu hỏi được đặt ra khi ta thấy thế $\mathbb{R}$ bởi một trường, vành,… bất kì thì tính chất trên liệu có còn đúng? Xây dựng lí thuyết để trả lời câu hỏi này, ta sẽ nhận được những ứng dụng rất thú vị.
1. Mở đầu:
Bài viết này nghiên cứu đa thức trên cấu trúc tổng quát của $\mathbb{R}$, đó là TRƯỜNG và rộng hơn là VÀNH:
Định nghĩa 1: Tập hợp $K$ được trang bị 2 phép toán + và . thỏa mãn:
♥ $(K,+)$ là nhóm abel
♥ $K$ đóng với phép nhân
♥ Hai phép toán kết hợp, nghĩa là $\forall a,b,c \in K$ thì $a(b+c)=ab+ac$ và $(b+c)a=ba+ca$
Khi đó $K$ gọi là vành.
Thông thường ta kí hiệu 0 là đơn vị của phép “+” và 1 là đơn vị của phép “.” (nếu có)
Khi phép $.$ có đơn vị ta gọi $K$ là vành có đơn vị, khi phép $.$ giao hoán ta gọi $K$ là vành giao hoán. Đặc biệt, khi $(K$\ $\{0\},.)$ là nhóm abel thì $K$ gọi là trường. Read the rest of this entry »

Đây là câu hỏi của một bạn giáo viên trên group của các giáo viên . Tôi thấy nó là một câu hỏi giàu ý nghĩa, do đó tôi viết bài này. Trước tiên, xin nhắc lại là vấn đề được bạn giáo viên trong group đó đặt ra như sau.

Bài toán.  Cho $a$ là một số thực dương còn $\alpha$ là một số vô tỷ, giả sử có hai dãy số hữu tỷ cùng hội tụ về $\alpha$ là $\left(r_n\right)_{n\in\mathbb N}$ và  $\left(t_n\right)_{n\in\mathbb N}$, xét hai dãy cho bởi sự gán trị\[{u_n} = {a^{{r_n}}},\quad {v_n} = {a^{{t_n}}},\;\forall {\mkern 1mu} n \in \mathbb N.\]Chứng minh rằng, $\left(u_n\right)_{n\in\mathbb N}$ và  $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến một giới hạn.

Chú ý rằng, nếu bài toán vừa đưa ra được giải quyết, thì ta sẽ có được định nghĩa tốt cho $a^{\alpha}$. Theo đó thì, giá trị của $a^{\alpha}$ chính là kết quả giới hạn duy nhất mà các dãy $\left(u_n\right)_{n\in\mathbb N}$ và  $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến. Giờ, ta sẽ xử lý bài toán kia. Read the rest of this entry »

Tags: , ,

Tình cờ đọc trên facebook thấy có một bạn hỏi một bài toán Giải Tích cơ bản có liên quan đến hàm lồi, như sau đây

Bài toán. Cho $f:\,\mathbb R\to\mathbb R$ là một hàm lồi không giảm. Chứng minh rằng, tồn tại giới hạn $\mathop {\lim }\limits_{x \to – \infty } \frac{{f\left( x \right)}}{x}$ và kết quả giới hạn đó là một số thực không âm. Read the rest of this entry »

Tags: , , ,