Cho tam giác $ABC$ có tâm ngoại tiếp $O.$ $O^*$ là điểm liên hợp đẳng cự của $O.$ $A’B’C’$ là tam giác ceva của $O.$ $A”B”C”$ là tam giác antipedal của $O$ đối với tam giác $A’B’C’.$ Chứng minh rằng tâm ngoại tiếp của tam giác $A”B”C”$ nằm trên đường thẳng $OO^*.$
You are currently browsing the monthly archive for Tháng Chín 2018.
Các hằng đẳng thức thường gặp:
$$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)$$
$$(a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)$$
$$(a+b+c)(ab+bc+ca)=(a+b)(b+c)(c+a)+abc$$ Read the rest of this entry »
Tags: Bất Đẳng Thức, Bất Đẳng Thức Hoán Vị, Schur, SOS
Bài toán 6 VNTST 2018. Cho tam giác $ABC$ nhọn nội tiếp $(O)$ và $(J)$ là đường tròn bàng tiếp góc $A$ của tam giác. Gọi $D,E,F$ lần lượt là tiếp điểm của $(J)$ trên $BC,CA,AB.$
a) Gọi $L$ là trung điểm $BC$. Đường tròn đường kính $LJ$ cắt $DE,DF$ tại $K,H.$ Chứng minh rằng $(BDK)$ và $(CDH)$ cắt nhau trên $(J).$
b) Giả sử $EF$ cắt $BC$ tại $G$ và $GJ$ cắt $AB,AC$ lần lượt tại $M,N.$ Gọi $P,Q$ là các điểm trên $JB,JC$ sao cho $\angle PAB=\angle QAC=90^\circ .$ Gọi $T$ là giao điểm của $PM,QN$ và $S$ là điểm chính giữa cung lớn $BC$ của $(O).$ Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC.$ Chứng minh rằng $SI$ cắt $AT$ tại một điểm thuộc $(O).$
Một số phát triển. Read the rest of this entry »
Tags: Hình Học, Hình Học Phẳng
Đây là bản dịch tiếng Việt của 8 bài toán Số Học ở IMO Shortlist 2017, lời giải các bài toán sẽ được sớm bổ xung.
P1. Với mỗi số nguyên dương $a_0$ lớn hơn $1$, ta xác định dãy số $\left\{a_n\right\}_{n\in\mathbb N}$ bởi công thức truy hồi$$a_{n+1} =
\begin{cases}
\sqrt{a_n} & \text{nếu }\; \sqrt{a_n} \in\mathbb Z, \\
a_n + 3 & \text{nếu}\;\sqrt{a_n} \notin\mathbb Z.
\end{cases}
$$Xác định các giá trị $a_0$ sao cho tồn tại một số $A$ thỏa mãn $a_n=A$ với vô số giá trị $n$. Read the rest of this entry »
Tags: IMO, IMO Shortlist, Số Học
Phản Hồi