Bài toán mà Hải Thanh hỏi.

Bài toán. Tìm min của $f(x)=6x_1+x_2+x_3+3x_4+x_5-x_6$, với ràng buộc $x_i\ge 0$ với $i=\overline{1,\,6}$ và\[\left\{ \begin{array}{l}
– {x_1} + {x_2} – {x_4} + {x_6} = 15\\
2{x_1} – {x_3} + 2{x_6} = – 9\\
4{x_1} + 2{x_4} + {x_5} – 3{x_6} = 2
\end{array} \right.\] Read the rest of this entry »

Tags:

Có rất là nhiều các chứng minh cho sự vô hạn của tập các số nguyên tố, ngây thơ-sơ cấp có mà 18+ cũng nhiều. Bạn nào mà tham lam, thì lên Arxiv kiếm cái bài EUCLID’S THEOREM ON THE INFINITUDE OF PRIMES: A HISTORICAL SURVEY OF ITS PROOFS . Ở bài viết nhỏ này, tôi xin trình bày lại một chứng minh mà tôi biết. Nó đã được đăng trên tạp chí Mathematics Magazine, và tác giả của nó là Haydar Goral, một bác bên Thổ Nhĩ Kỳ, nội dung như sau đây. Read the rest of this entry »

Tags: , ,

Trong cái đề thi minh hoạ cho đề thi THPT QG của bộ Dục, có bài toán sau đây.

Bài toán 1. Cho $f(x)$ là một hàm liên tục trên $\mathbb R$ và thỏa mãn \[xf\left( {{x^3}} \right) + f\left( {1 – {x^2}} \right) = – {x^{10}} + {x^6} – 2x,\quad \forall {\mkern 1mu} x \in \mathbb R.\]Tính tích phân $I=\displaystyle{\int\limits_0^1 {f\left( x \right)dx.}}$

Chép như thế, là chưa có đầy đủ, bởi vì dưới nội dung đã nêu theo đề gốc còn 4 cái đáp án A, B, C, D cho các cháu học sinh chúng nó chọn. Mình không quan tâm cái đó, và vì tính tích phân chậm, nên cái mình quan tâm là bài toán sau. Read the rest of this entry »

Tags: , ,

Đọc sách gặp một vấn đề khá thú vị, nên tôi trình bày ra đây.Cho $f,\,g:\;\mathbb R\to\mathbb R$ là các hàm có đạo hàm (khả vi) trên khắp $\mathbb R$, khi đó thì chắc chắn $f(x)+g(x)$ cũng là một hàm có đạo hàm trên $\mathbb R$, và ta có công thức\[{f^\prime }\left( x \right) + {g^\prime }\left( x \right) = {\left( {f\left( x \right) + g\left( x \right)} \right)^\prime }.\] Câu hỏi rất lăn tăn và hồn nhiên đặt ra là: Khi mà đã sẵn có $f^\prime(x)$ và $g^\prime(x)$ trên khắp $\mathbb R$, thì liệu có luôn tồn tại hay không một hàm $h(x)$ cũng khả vi trên khắp $\mathbb R$ để sao cho với mỗi số thực $x$ ta đều có đẳng thức $$f^\prime(x)g^\prime(x)=h^\prime(x)?$$

Trong tình huống $f$ và $g$ khả vi liên tục trên $\mathbb R$, câu trả lời ắt là tầm thường. Read the rest of this entry »

Tags: , ,

Cho trước các đa thức hệ số thực là $f(x)$ và $g(x)$, trong đó $\deg g>0$ khi đó ta luôn có thể viết phân tích chính tắc của $g$ dưới dạng\[g\left( x \right) = c{p_1}{\left( x \right)^{{k_1}}}{p_2}{\left( x \right)^{{k_2}}} \ldots {p_n}{\left( x \right)^{{k_n}}}.\]Ở đây, $c$ là một hằng số thực khác $0$ (là hệ số bậc cao nhất của $g(x)$), còn $p_i(x)$ là các đa thức monic bất khả quy trên $\mathbb R[x]$, tức là các đa thức ở dạng $x-r_i$ hoặc $x^2+a_ix+b_i$ với $r_i,\,a_i,\,b_i$ là các số thực đồng thời $\Delta_i=a_i^2-4b_i<0$. Read the rest of this entry »

Tags: ,

Thông thường khi xét đa thức f $\in \mathbb{R}[x]$, f phân tích duy nhất được thành các đa thức bất khả quy. Câu hỏi được đặt ra khi ta thấy thế $\mathbb{R}$ bởi một trường, vành,… bất kì thì tính chất trên liệu có còn đúng? Xây dựng lí thuyết để trả lời câu hỏi này, ta sẽ nhận được những ứng dụng rất thú vị.
1. Mở đầu:
Bài viết này nghiên cứu đa thức trên cấu trúc tổng quát của $\mathbb{R}$, đó là TRƯỜNG và rộng hơn là VÀNH:
Định nghĩa 1: Tập hợp $K$ được trang bị 2 phép toán + và . thỏa mãn:
♥ $(K,+)$ là nhóm abel
♥ $K$ đóng với phép nhân
♥ Hai phép toán kết hợp, nghĩa là $\forall a,b,c \in K$ thì $a(b+c)=ab+ac$ và $(b+c)a=ba+ca$
Khi đó $K$ gọi là vành.
Thông thường ta kí hiệu 0 là đơn vị của phép “+” và 1 là đơn vị của phép “.” (nếu có)
Khi phép $.$ có đơn vị ta gọi $K$ là vành có đơn vị, khi phép $.$ giao hoán ta gọi $K$ là vành giao hoán. Đặc biệt, khi $(K$\ $\{0\},.)$ là nhóm abel thì $K$ gọi là trường. Read the rest of this entry »

Đây là câu hỏi của một bạn giáo viên trên group của các giáo viên . Tôi thấy nó là một câu hỏi giàu ý nghĩa, do đó tôi viết bài này. Trước tiên, xin nhắc lại là vấn đề được bạn giáo viên trong group đó đặt ra như sau.

Bài toán.  Cho $a$ là một số thực dương còn $\alpha$ là một số vô tỷ, giả sử có hai dãy số hữu tỷ cùng hội tụ về $\alpha$ là $\left(r_n\right)_{n\in\mathbb N}$ và  $\left(t_n\right)_{n\in\mathbb N}$, xét hai dãy cho bởi sự gán trị\[{u_n} = {a^{{r_n}}},\quad {v_n} = {a^{{t_n}}},\;\forall {\mkern 1mu} n \in \mathbb N.\]Chứng minh rằng, $\left(u_n\right)_{n\in\mathbb N}$ và  $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến một giới hạn.

Chú ý rằng, nếu bài toán vừa đưa ra được giải quyết, thì ta sẽ có được định nghĩa tốt cho $a^{\alpha}$. Theo đó thì, giá trị của $a^{\alpha}$ chính là kết quả giới hạn duy nhất mà các dãy $\left(u_n\right)_{n\in\mathbb N}$ và  $\left(v_n\right)_{n\in\mathbb N}$ cùng hội tụ đến. Giờ, ta sẽ xử lý bài toán kia. Read the rest of this entry »

Tags: , ,

Tình cờ đọc trên facebook thấy có một bạn hỏi một bài toán Giải Tích cơ bản có liên quan đến hàm lồi, như sau đây

Bài toán. Cho $f:\,\mathbb R\to\mathbb R$ là một hàm lồi không giảm. Chứng minh rằng, tồn tại giới hạn $\mathop {\lim }\limits_{x \to – \infty } \frac{{f\left( x \right)}}{x}$ và kết quả giới hạn đó là một số thực không âm. Read the rest of this entry »

Tags: , , ,

Có bạn hỏi tôi bài toán như sau.

Bài toán. Cho $p$ là số nguyên tố lẻ, chứng minh rằng tồn tại các số nguyên $x,\,y$ để\[x^2+y^2+1\equiv 0\pmod p.\]

Bài này nếu áp dụng định lý Cauchy-Davenport thì là.. hiển nhiên. Nhưng sau đây là một cách giải sơ cấp. Read the rest of this entry »

Tags: , ,

“How to Solve It”  là tên một cuốn sách nổi tiếng của G.Pólya, một nhà sư phạm Toán Học nổi tiếng. Tôi mạo phép mượn nó làm tiêu đề cho chuỗi bài viết này, một chuỗi bài tôi muốn viết từ lâu. Nguyên nhân khoan hoãn và trù trừ cho dự định viết chuỗi bài này, vì tôi cảm thấy tự ti bởi năng lực bản thân, sợ viết ra rồi bị đánh giá là lên gân etc vv.. Tuy nhiên, do bản chất công việc phải làm hằng ngày, nên tôi lại hiểu rõ trách nhiệm mình cần làm. Thôi thì cứ viết lại những gì mình cảm nhận, hy vọng nó có ích với một số đối tượng nhất định. Read the rest of this entry »

Tags: , , , ,

« Older entries